AIM: To evaluate the impact of spherical and aspherical intraocular lenses on the postoperative visual quality of age-related cataract patients using Optical Quality Analysis System (OQAS). METHODS: Seventy-four ...AIM: To evaluate the impact of spherical and aspherical intraocular lenses on the postoperative visual quality of age-related cataract patients using Optical Quality Analysis System (OQAS). METHODS: Seventy-four eyes with age-related cataracts were randomly divided into spherical and aspherical lens implantation groups. Best-corrected visual acuity (BCVA) was measured preoperatively, one day, one week, two weeks, one month and two months after surgery. A biometric systems analysis using the OQAS objective scattering index (OSI) was performed. RESULTS: There were no significant differences in visual acuity (P〉0.05) before and after spherical and aspheric lens implantation. There was a negative linear correction between the OSI value and BCVA (t-=-0.634, P=-0.000), and positive corrections between the OSI value and the lens LOCUS III value of nucleus color (NC), nucleus opacity (NO), cortex (C) and posterior lens capsular (P) (r=0.704, P=0.000; r=0.514, P=0.000; r=0.276, P=0.020; r=0.417, P=-0.000, respectively). OSI values of spherical vs aspherical lenses were 11.5±3.6 vs 11.8±3.4, 4.1±0.9 vs 3.3±0.8, 3.5±0.9 vs 2.7±0.7, 3.3±0.8 vs 2.6±0.7, 3.2±0.7 vs 2.5±0.8, and 3.2±0.8 vs 2.50.8 before and ld, 1, 2wk, 1 and 2mo after surgery, respectively. All time points varied significantly (P〈0.01) between the two groups. CONCLUSION: Aspherical IOLs does not significantly affect visual acuity compared with spherical IOLs. The OSI value, was significantly lower in the aspherical lens group compared with the spherical lens. This study shows that objective visual quality of aspheric IOLs is better than that of the spherical lens by means of OQAS biological measurement method.展开更多
Precision grinding is a key process for realizing the use of large-aperture aspherical optical elements in laser nuclear fusion devices,large-aperture astronomical telescopes,and high-resolution space cameras.In this ...Precision grinding is a key process for realizing the use of large-aperture aspherical optical elements in laser nuclear fusion devices,large-aperture astronomical telescopes,and high-resolution space cameras.In this study,the arc envelope grinding process of large-aperture aspherical optics is investigated using a CM1500 precision grinding machine with a maximum machinable diameter ofΦ1500 mm.The form error of the aspherical workpiece induced by wheel setting errors is analytically modeled for both parallel and cross grinding.Results show that the form error is more sensitive to the wheel setting error along the feed direction than that along the lateral direction.It is a bilinear function of the feed-direction wheel setting error and the distance to the optical axis.Based on the error function above,a method to determine the wheel setting error is proposed.Subsequently,grinding tests are performed with the wheels aligned accurately.Using a newly proposed partial error compensation method with an appropriate compensation factor,a form error of 3.4μm peak-to-valley(PV)for aΦ400 mm elliptical K9 glass surface is achieved.展开更多
文摘AIM: To evaluate the impact of spherical and aspherical intraocular lenses on the postoperative visual quality of age-related cataract patients using Optical Quality Analysis System (OQAS). METHODS: Seventy-four eyes with age-related cataracts were randomly divided into spherical and aspherical lens implantation groups. Best-corrected visual acuity (BCVA) was measured preoperatively, one day, one week, two weeks, one month and two months after surgery. A biometric systems analysis using the OQAS objective scattering index (OSI) was performed. RESULTS: There were no significant differences in visual acuity (P〉0.05) before and after spherical and aspheric lens implantation. There was a negative linear correction between the OSI value and BCVA (t-=-0.634, P=-0.000), and positive corrections between the OSI value and the lens LOCUS III value of nucleus color (NC), nucleus opacity (NO), cortex (C) and posterior lens capsular (P) (r=0.704, P=0.000; r=0.514, P=0.000; r=0.276, P=0.020; r=0.417, P=-0.000, respectively). OSI values of spherical vs aspherical lenses were 11.5±3.6 vs 11.8±3.4, 4.1±0.9 vs 3.3±0.8, 3.5±0.9 vs 2.7±0.7, 3.3±0.8 vs 2.6±0.7, 3.2±0.7 vs 2.5±0.8, and 3.2±0.8 vs 2.50.8 before and ld, 1, 2wk, 1 and 2mo after surgery, respectively. All time points varied significantly (P〈0.01) between the two groups. CONCLUSION: Aspherical IOLs does not significantly affect visual acuity compared with spherical IOLs. The OSI value, was significantly lower in the aspherical lens group compared with the spherical lens. This study shows that objective visual quality of aspheric IOLs is better than that of the spherical lens by means of OQAS biological measurement method.
基金Fellowship of China National Postdoctoral Program for Innovative Talents(Grant No.BX20200268)Research Project of State Key Laboratory of Mechanical System and Vibration(Grant No.MSV202103)+1 种基金National Natural Science Foundation of China(Grant No.51720105016)Higher Education Discipline Innovation Project(Grant No.B12016).
文摘Precision grinding is a key process for realizing the use of large-aperture aspherical optical elements in laser nuclear fusion devices,large-aperture astronomical telescopes,and high-resolution space cameras.In this study,the arc envelope grinding process of large-aperture aspherical optics is investigated using a CM1500 precision grinding machine with a maximum machinable diameter ofΦ1500 mm.The form error of the aspherical workpiece induced by wheel setting errors is analytically modeled for both parallel and cross grinding.Results show that the form error is more sensitive to the wheel setting error along the feed direction than that along the lateral direction.It is a bilinear function of the feed-direction wheel setting error and the distance to the optical axis.Based on the error function above,a method to determine the wheel setting error is proposed.Subsequently,grinding tests are performed with the wheels aligned accurately.Using a newly proposed partial error compensation method with an appropriate compensation factor,a form error of 3.4μm peak-to-valley(PV)for aΦ400 mm elliptical K9 glass surface is achieved.