Addressing the insufficiency in down-regulation leeway within integrated energy systems stemming from the erratic and volatile nature of wind and solar renewable energy generation,this study focuses on formulating a c...Addressing the insufficiency in down-regulation leeway within integrated energy systems stemming from the erratic and volatile nature of wind and solar renewable energy generation,this study focuses on formulating a coordinated strategy involving the carbon capture unit of the integrated energy system and the resources on the load storage side.A scheduling model is devised that takes into account the confidence interval associated with renewable energy generation,with the overarching goal of optimizing the system for low-carbon operation.To begin with,an in-depth analysis is conducted on the temporal energy-shifting attributes and the low-carbon modulation mechanisms exhibited by the source-side carbon capture power plant within the context of integrated and adaptable operational paradigms.Drawing from this analysis,a model is devised to represent the adjustable resources on the charge-storage side,predicated on the principles of electro-thermal coupling within the energy system.Subsequently,the dissimilarities in the confidence intervals of renewable energy generation are considered,leading to the proposition of a flexible upper threshold for the confidence interval.Building on this,a low-carbon dispatch model is established for the integrated energy system,factoring in the margin allowed by the adjustable resources.In the final phase,a simulation is performed on a regional electric heating integrated energy system.This simulation seeks to assess the impact of source-load-storage coordination on the system’s low-carbon operation across various scenarios of reduction margin reserves.The findings underscore that the proactive scheduling model incorporating confidence interval considerations for reduction margin reserves effectively mitigates the uncertainties tied to renewable energy generation.Through harmonized orchestration of source,load,and storage elements,it expands the utilization scope for renewable energy,safeguards the economic efficiency of system operations under low-carbon emission conditions,and empirically validates the soundness and efficacy of the proposed approach.展开更多
To improve the forecasting reliability of travel time, the time-varying confidence interval of travel time on arterials is forecasted using an autoregressive integrated moving average and generalized autoregressive co...To improve the forecasting reliability of travel time, the time-varying confidence interval of travel time on arterials is forecasted using an autoregressive integrated moving average and generalized autoregressive conditional heteroskedasticity (ARIMA-GARCH) model. In which, the ARIMA model is used as the mean equation of the GARCH model to model the travel time levels and the GARCH model is used to model the conditional variances of travel time. The proposed method is validated and evaluated using actual traffic flow data collected from the traffic monitoring system of Kunshan city. The evaluation results show that, compared with the conventional ARIMA model, the proposed model cannot significantly improve the forecasting performance of travel time levels but has advantage in travel time volatility forecasting. The proposed model can well capture the travel time heteroskedasticity and forecast the time-varying confidence intervals of travel time which can better reflect the volatility of observed travel times than the fixed confidence interval provided by the ARIMA model.展开更多
An AI-aided simulation system embedded in a model-based, aspiration-led decision support system NY-IEDSS is reported. The NY-IEDSS is designed for mid-term development strategic study of the Nanyang Region in Henan, C...An AI-aided simulation system embedded in a model-based, aspiration-led decision support system NY-IEDSS is reported. The NY-IEDSS is designed for mid-term development strategic study of the Nanyang Region in Henan, China, and is getting beyond its prototype stage under the decision maker's (the end user) orientation. The integration of simulation model system, decision analysis and expert system for decision support in the system implementation was reviewed. The intent of the paper is to provide insight as to how system capability and acceptability can be enhanced by this integration. Moreover, emphasis is placed on problem orientation in applying the method.展开更多
基金supported by the Science and Technology Project of State Grid Inner Mongolia East Power Co.,Ltd.:Research on Carbon Flow Apportionment and Assessment Methods for Distributed Energy under Dual Carbon Targets(52664K220004).
文摘Addressing the insufficiency in down-regulation leeway within integrated energy systems stemming from the erratic and volatile nature of wind and solar renewable energy generation,this study focuses on formulating a coordinated strategy involving the carbon capture unit of the integrated energy system and the resources on the load storage side.A scheduling model is devised that takes into account the confidence interval associated with renewable energy generation,with the overarching goal of optimizing the system for low-carbon operation.To begin with,an in-depth analysis is conducted on the temporal energy-shifting attributes and the low-carbon modulation mechanisms exhibited by the source-side carbon capture power plant within the context of integrated and adaptable operational paradigms.Drawing from this analysis,a model is devised to represent the adjustable resources on the charge-storage side,predicated on the principles of electro-thermal coupling within the energy system.Subsequently,the dissimilarities in the confidence intervals of renewable energy generation are considered,leading to the proposition of a flexible upper threshold for the confidence interval.Building on this,a low-carbon dispatch model is established for the integrated energy system,factoring in the margin allowed by the adjustable resources.In the final phase,a simulation is performed on a regional electric heating integrated energy system.This simulation seeks to assess the impact of source-load-storage coordination on the system’s low-carbon operation across various scenarios of reduction margin reserves.The findings underscore that the proactive scheduling model incorporating confidence interval considerations for reduction margin reserves effectively mitigates the uncertainties tied to renewable energy generation.Through harmonized orchestration of source,load,and storage elements,it expands the utilization scope for renewable energy,safeguards the economic efficiency of system operations under low-carbon emission conditions,and empirically validates the soundness and efficacy of the proposed approach.
基金The National Natural Science Foundation of China(No.51108079)
文摘To improve the forecasting reliability of travel time, the time-varying confidence interval of travel time on arterials is forecasted using an autoregressive integrated moving average and generalized autoregressive conditional heteroskedasticity (ARIMA-GARCH) model. In which, the ARIMA model is used as the mean equation of the GARCH model to model the travel time levels and the GARCH model is used to model the conditional variances of travel time. The proposed method is validated and evaluated using actual traffic flow data collected from the traffic monitoring system of Kunshan city. The evaluation results show that, compared with the conventional ARIMA model, the proposed model cannot significantly improve the forecasting performance of travel time levels but has advantage in travel time volatility forecasting. The proposed model can well capture the travel time heteroskedasticity and forecast the time-varying confidence intervals of travel time which can better reflect the volatility of observed travel times than the fixed confidence interval provided by the ARIMA model.
文摘An AI-aided simulation system embedded in a model-based, aspiration-led decision support system NY-IEDSS is reported. The NY-IEDSS is designed for mid-term development strategic study of the Nanyang Region in Henan, China, and is getting beyond its prototype stage under the decision maker's (the end user) orientation. The integration of simulation model system, decision analysis and expert system for decision support in the system implementation was reviewed. The intent of the paper is to provide insight as to how system capability and acceptability can be enhanced by this integration. Moreover, emphasis is placed on problem orientation in applying the method.