期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
Response Spectrum Analysis of 7-story Assembled Frame Structure with Energy Dissipation System
1
作者 Jin Zhao Yi Wang Zhengwei Ma 《Structural Durability & Health Monitoring》 EI 2023年第2期159-173,共15页
Viscoelastic damper is an effective passive damping device,which can reduce the seismic response of the structure by increasing the damping and dissipating the vibration energy of structures.It has a wide application ... Viscoelastic damper is an effective passive damping device,which can reduce the seismic response of the structure by increasing the damping and dissipating the vibration energy of structures.It has a wide application prospect in actual structural vibration control because of simple device and economical material.In view of the poor seismic behaviors of assembled frame structure connections,various energy dissipation devices are proposed to improve the seismic performance.The finite element numerical analysis method is adopted to analyze relevant energy dissipation structural parameters.The response spectrum of a 7-story assembled frame structure combined the ordinary steel support,ordinary viscoelastic damper,and viscoelastic damper with displacement amplification device is analyzed.The analysis results show that the mechanical behavior of assembled frame structure with ordinary steel supports are not significantly different from those without energy dissipation devices.The assembled frame structure with viscoelastic damper has better seismic performance and energy dissipation,especially for the viscoelastic damper with displacement amplification devices.The maximum value of inter-story displacement angle decreases by 32.24%;the maximum floor displacement decreases by 31.91%,and the base shear decreases by 13.62%compared with the assembled frame structures without energy dissipation devices.The results show that the seismic fortification ability of the structure is significantly improved,and the overall structure is more uniformly stressed.The damping structure with viscoelastic damper mainly reduces the dynamic response of the structure by increasing the damping coefficient,rather than by changing the natural vibration period of the structure.This paper provides an effective theoretical basis and reference for improving the energy dissipation system and the seismic performance of assembled frame structures. 展开更多
关键词 assembled frame structure energy dissipation devices response spectrum analysis viscoelastic damper
下载PDF
Analysis of Soundproof Technology of Assembled Steel Structure Houses
2
作者 Jing Sun 《Journal of World Architecture》 2023年第5期66-71,共6页
The problem of noise has always been highlighted in assembled steel structure houses.Therefore,it is necessary to use effective soundproof measures where steel beams intersect with the reserved line pipe openings,door... The problem of noise has always been highlighted in assembled steel structure houses.Therefore,it is necessary to use effective soundproof measures where steel beams intersect with the reserved line pipe openings,doors,windows,elevator shafts,and other locations.In this paper,we will investigate the areas with subpar soundproof performance in an assembled steel structure residential project and propose suitable noise control measures to address this issue. 展开更多
关键词 assembled steel structure Residential engineering Sound insulation Construction technology Online publication:October 25 2023
下载PDF
Hierarchical model updating strategy of complex assembled structures with uncorrelated dynamic modes 被引量:1
3
作者 Chengwei FEI Haotian LIU +2 位作者 Rhea PATRICIA LIEM Yatsze CHOY Lei HAN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第3期281-296,共16页
In structural simulation and design,an accurate computational model directly determines the effectiveness of performance evaluation.To establish a high-fidelity dynamic model of a complex assembled structure,a Hierarc... In structural simulation and design,an accurate computational model directly determines the effectiveness of performance evaluation.To establish a high-fidelity dynamic model of a complex assembled structure,a Hierarchical Model Updating Strategy(HMUS)is developed for Finite Element(FE)model updating with regard to uncorrelated modes.The principle of HMUS is first elaborated by integrating hierarchical modeling concept,model updating technology with proper uncorrelated mode treatment,and parametric modeling.In the developed strategy,the correct correlated mode pairs amongst the uncorrelated modes are identified by an error minimization procedure.The proposed updating technique is validated by the dynamic FE model updating of a simple fixed–fixed beam.The proposed HMUS is then applied to the FE model updating of an aeroengine stator system(casings)to demonstrate its effectiveness.Our studies reveal that(A)parametric modeling technique is able to build an efficient equivalent model by simplifying complex structure in geometry while ensuring the consistency of mechanical characteristics;(B)the developed model updating technique efficiently processes the uncorrelated modes and precisely identifies correct Correlated Mode Pairs(CMPs)between FE model and experiment;(C)the proposed HMUS is accurate and efficient in the FE model updating of complex assembled structures such as aeroengine casings with large-scale model,complex geometry,high-nonlinearity and numerous parameters;(D)it is appropriate to update a complex structural FE model parameterized.The efforts of this study provide an efficient updating strategy for the dynamic model updating of complex assembled structures with experimental test data,which is promising to promote the precision and feasibility of simulation-based design optimization and performance evaluation of complex structures. 展开更多
关键词 Aeroengine casings assembled structures Correlated mode pair Hierarchical model updating Objective function Uncorrelated modes
原文传递
Design methods of rhombic tensegrity structures 被引量:1
4
作者 Xi-Qiao Feng Yue Li +2 位作者 Yan-Ping Cao Shou-Wen Yu Yuan-Tong Gu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2010年第4期559-565,共7页
As a special type of novel flexible structures, tensegrity holds promise for many potential applications in such fields as materials science, biomechanics, civil and aerospace engineering. Rhombic systems are an impor... As a special type of novel flexible structures, tensegrity holds promise for many potential applications in such fields as materials science, biomechanics, civil and aerospace engineering. Rhombic systems are an important class of tensegrity structures, in which each bar constitutes the longest diagonal of a rhombus of four strings. In this paper, we address the design methods of rhombic structures based on the idea that many tensegrity structures can be constructed by assembling one-bar elementary cells. By analyzing the properties of rhombic cells, we first develop two novel schemes, namely, direct enumeration scheme and cell-substitution scheme. In addition, a facile and efficient method is presented to integrate several rhombic systems into a larger tensegrity structure. To illustrate the applications of these methods, some novel rhombic tensegrity structures are constructed. 展开更多
关键词 Tensegrity Structural design Assembling method Flexible structure
下载PDF
Optimization Design of an Embedded Multi-Cell Thin-Walled Energy Absorption Structures with Local Surface Nanocrystallization
5
作者 Kang Xu Tong Li +3 位作者 Gaofei Guan Jianlong Qu Zhen Zhao Xinsheng Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第2期987-1002,共16页
Bymeans of the local surface nanocrystallization that enables to change the material on local positions,an innovative embedded multi-cell(EMC)thin-walled energy absorption structures with local surface nanocrystalliza... Bymeans of the local surface nanocrystallization that enables to change the material on local positions,an innovative embedded multi-cell(EMC)thin-walled energy absorption structures with local surface nanocrystallization is proposed in this paper.The local surface nanacrystallization stripes are regarded as the moving morphable components in the domain for optimal design.Results reveal that after optimizing the local surface nanocrystallization layout,the specific energy absorption(SEA)is increased by 50.78%compared with the untreated counterpart.Besides,in contrast with the optimized 4-cell structure,the SEA of the nanocrystallized embedded 9-cell structure is further enhanced by 27.68%,in contrast with the 9-cell structure,the SEA of the nanocrystallized embedded clapboard type 9-cell structure is enhanced by 3.61%.Thismethod provides a guidance for the design of newenergy absorption devices. 展开更多
关键词 Local surface nanocrystallization EMC model assembled thin-walled energy absorption structures optimization design specific energy absorption
下载PDF
Review on multi-dimensional assembled S-scheme heterojunction photocatalysts 被引量:1
6
作者 Jiani Lu Shaonan Gu +3 位作者 Hongda Li Yinan Wang Meng Guo Guowei Zhou 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第29期214-239,共26页
S-scheme heterostructure photocatalysts utilize the synergistic and superposition effects of materials,ef-fectively separating electrons and holes,maintaining strong redox capacity,and addressing issues en-countered b... S-scheme heterostructure photocatalysts utilize the synergistic and superposition effects of materials,ef-fectively separating electrons and holes,maintaining strong redox capacity,and addressing issues en-countered by current photocatalytic reactions.This review explores the origins and unique benefits of S-scheme heterojunctions.Specifically,we summarized and discussed the effects of different dimensions of semiconductors constituting S-scheme heterojunctions and the similarities and differences in elec-tron transfer processes when constructing heterojunctions.Additionally,we analyzed several methods for proving the formation of S-scheme heterojunctions and the electron transfer process,both directly and indirectly.Finally,we review the applications of S-scheme heterojunctions in various fields of photo-catalysis,including photocatalytic water splitting,pollution degradation,CO_(2) reduction and other related photocatalytic applications.Our hope is that this review will provide an essential reference for the devel-opment and application of S-scheme heterojunction photocatalysis. 展开更多
关键词 S-scheme heterojunctions Multi-dimensional assembled structures Photocatalysis Water splitting Pollution degradation Co_(2)reduction
原文传递
Aircraft vulnerability modeling and computation methods based on product structure and CATIA 被引量:13
7
作者 Li Jun Yang Wei +3 位作者 Zhang Yugang Pei Yang Ren Yunsong Wang Wei 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第2期334-342,共9页
Survivability strengthening/vulnerability reduction designs have become one of the most important design disciplines of military aircraft now. Due to progressiveness and complexity of modern combat aircraft, the exist... Survivability strengthening/vulnerability reduction designs have become one of the most important design disciplines of military aircraft now. Due to progressiveness and complexity of modern combat aircraft, the existing vulnerability modeling and computation methods cannot meet the current engineering application requirements. Therefore, a vulnerability modeling and computation method based on product structure and CATIA is proposed in sufficient consideration of the design characteristics of modern combat aircraft. This method directly constructs the aircraft vulnerability model by CATIA or the digital model database, and manages all the product components of the vulnerability model via aircraft product structure. Using CAA second development, the detailed operations and computation methods of vulnerability analysis are integrated into CATIA software environment. Comprehensive assessment data and visual kill probability Iso-contours can also be presented, which meet the vulnerability analysis requirements of modern combat aircraft effectively. The intact vulnerability model of one hypothetical aircraft is constructed, and the effects of redundant technology to the aircraft vulnerability are assessed, which validate the engineering practicality of the method. 展开更多
关键词 Aircraft assembly Combat effectiveness CATIA Kill probability Product structure Vulnerability Redundancy
原文传递
Ag_(2)S Quantum Dots Decorated on Porous Cubic-CdS Nanosheets-assembled Flowers for Photocatalytic CO_(2)Reduction 被引量:1
8
作者 Wei Fu Jiajie Fan Quanjun Xiang 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2022年第6期39-47,共9页
The production of renewable fossil fuels such as CH_(4) and CO by photocatalytic CO_(2)reduction has attracted more and more attention.However,single photocatalyst is less efficient for photocatalytic reduction of CO_... The production of renewable fossil fuels such as CH_(4) and CO by photocatalytic CO_(2)reduction has attracted more and more attention.However,single photocatalyst is less efficient for photocatalytic reduction of CO_(2)due to the fast recombination of photogenerated electron pairs.Herein,we successfully prepare CdS-Ag_(2)S composite by assembling the Ag_(2)S QDs cocatalyst on the surface of CdS nanosheet-assembled flower through oil-bath solvothermal method.This composite is prepared through a simple self-assembly strategy using cadmium chloride,ammonia and thiourea as precursors of the CdS nanosheet-assembled flower and silver nitrate and 3-mercaptopropionic acid as the precursors of Ag_(2)S QDs.The average diameter of Ag_(2)S QDs is apparently 6.0 nm.The light absorption edge of the composite is at around 560 nm,with the corresponding band gap at 2.14 eV.The CdS-Ag_(2)S QDs composite with 5 wt%Ag_(2)S QDs loaded achieves CO evolution rate of 16.6μmol·g^(-1)·h^(-1)without noble-metal cocatalysts.This strengthened photocatalytic performance and photocatalytic stability were attributed to the energy band broadening of Ag_(2)S QDs caused by quantum size effect and the large specific surface area due to the assembled flower.The mechanism underlying the enhanced photocatalytic CO_(2)reduction activity is further proposed.This study demonstrates that semiconductor-based quantum dots are strong candidates for excellent cocatalysts in photocatalysis. 展开更多
关键词 CdS nanosheet Ag_(2)S quantum dots(QDs) assembled flower structure composite materials photocatalytic CO_(2)reduction
原文传递
Facile and Convenient Fabrication of Color-controlled Colloidal Magnetically Assembled Photonic Crystals
9
作者 YOU Aimei CAO Yuhua CAOGuangqun 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2017年第4期525-529,共5页
A facile, convenient and flexible method to tune the structural color of the colloidal magnetically assembled photonic crystals(CMA-PCs) was proposed. The mechanism to tune structural color could be attributed to th... A facile, convenient and flexible method to tune the structural color of the colloidal magnetically assembled photonic crystals(CMA-PCs) was proposed. The mechanism to tune structural color could be attributed to the significant influence of the surfactant sodium dodecyl sulfate(SDS) concentration on the particle size, especially on the magnetite content of the superparamagnetic composite nanoparticles(MCNPs). By adjusting SDS concentra- tion in miniemulsion polymerization of MCNPs, CMA-PCs with desired diffraction colors could be obtained. 展开更多
关键词 Controllable structural color Colloidal magnetically assembled photonic crystal Miniemulsion polymerization
原文传递
Assembly mechanisms and energy transfer pathways deciphered in the cryo-EM structure of spinach photosystem Ⅱ-LHCⅡ supercomplex
10
《Science Foundation in China》 CAS 2016年第4期36-,共1页
Funded by the National Natural Science Foundation of China(NSFC),Ministry of Science and Technology of China,and Chinese Academy of Sciences,ajoint team of three laboratories from the Institute of Biophysics of Chines... Funded by the National Natural Science Foundation of China(NSFC),Ministry of Science and Technology of China,and Chinese Academy of Sciences,ajoint team of three laboratories from the Institute of Biophysics of Chinese Academy of Sciences,led by Dr.Liu Zhenfeng(柳振峰),Dr.Zhang Xinzheng(章新政)and Dr.Li Mei(李梅)respectively,solved the structure of spinach photosystem II-LHCII supercom- 展开更多
关键词 PSII Assembly mechanisms and energy transfer pathways deciphered in the cryo-EM structure of spinach photosystem SUPERCOMPLEX LHC EM
原文传递
Fabrication of polymeric-Laponite composite hollow microspheres via LBL assembly 被引量:2
11
作者 Wei Deng Hua-Chao Guo +1 位作者 Guo-An Li Cheng-You Kan 《Chinese Chemical Letters》 SCIE CAS CSCD 2017年第2期367-371,共5页
Hollow structure microspheres with composite polymeric-Laponite shells were prepared by electrostatic self-assembly of Laponite on the polymeric hollow microspheres in this work.The multilayer hydrophilic core/hydroph... Hollow structure microspheres with composite polymeric-Laponite shells were prepared by electrostatic self-assembly of Laponite on the polymeric hollow microspheres in this work.The multilayer hydrophilic core/hydrophobic shell polymer latex particles containing carboxyl groups inside were first synthesized via seeded emulsion polymerization,followed by alkali treatment,generating polymeric hollow microspheres.Then,polyethyleneimine(PEI) and Laponite were alternately electrostatic adsorbed on the prepared polymeric hollow microspheres to form polymeric-Laponite composite hollow microspheres.It was indicated that the morphology of alkali-treated microspheres could be tuned through simply altering the dosage of alkali used in the post-treatment process.Along with the increasing of the coating layers,the zeta potential of microspheres absorbed PEI or Laponite approximately tended to be constant respectively,and the thickness of Laponite layer around the hollow microspheres increased clearly,getting more uniform and homogenous.Furthermore,the corresponding polymeric-Laponite hollow microspheres showed high pressure resistance ability compared to the polymeric hollow microspheres. 展开更多
关键词 Composite microspheres Hollow structure Laponite Osmotic swelling LBL assembly
原文传递
Layered and three-dimensional uranyl–organic assemblies with 4,4′-oxidiphthalic acid 被引量:1
12
作者 Dai Wu Ying Gao +3 位作者 Wan-Guo Tian Yun-Hui Li Weiting Yang Zhong-Ming Sun 《Chinese Chemical Letters》 SCIE CAS CSCD 2016年第3期325-329,共5页
Hydrothermal reactions of uranyl nitrate and 4,4'-oxidiphthalic acid(H4L) resulted in the formation of three new uranyl-organic framework materials,namely(NH4)2[(UO2)3(L)2]·5H2O(1),(NEt4)[(UO2)3(... Hydrothermal reactions of uranyl nitrate and 4,4'-oxidiphthalic acid(H4L) resulted in the formation of three new uranyl-organic framework materials,namely(NH4)2[(UO2)3(L)2]·5H2O(1),(NEt4)[(UO2)3(H2O)(L)(HL)](2) and(UO2)7(H2O)2(phen)4(L)2(HL)2(3)(NEt4 = tetraethylammonium,phen = 1,10-phenanthroline).These three structures all comprise common uranyl pentagonal bipyramids.In 1,UO7polyhedra are linked by hexadentate ligands to form a 3D framework with 1D channels,in which are located NH4^+ ions and water molecules.While in 2,the organic ligands adopt pentadentate and hexadentate coordination modes,ligating UO7 units to create a layered structure with channels filled by NEt4^+ ions.For 3,uranyl square bipyramids are also accommodated together with pentagonal bipyramids,which are linked by tetradentate carboxylate ligands to produce the layered assembly.Phen molecules also coordinate to the uranyl centers to build up the structure.Luminescent studies indicate that 2 and 3 exhibit the characteristic uranyl emission. 展开更多
关键词 Uranyl–organic assemblies Carboxylates structures Luminescence
原文传递
Structural modulation and assembling of metal halide perovskites for solar cells and light-emitting diodes
13
作者 Xixia Liu Zhaofu Zhang +1 位作者 Fen Lin Yuanhang Cheng 《InfoMat》 SCIE CAS 2021年第11期1218-1250,共33页
Metal halide perovskites possess appealing optoelectronic properties and have been widely applied for solar energy harvesting and light emitting.Although perovskite solar cells(PeSCs)and perovskite light-emitting diod... Metal halide perovskites possess appealing optoelectronic properties and have been widely applied for solar energy harvesting and light emitting.Although perovskite solar cells(PeSCs)and perovskite light-emitting diodes(PeLEDs)have been developed rapidly in recent years,there are still no universal rules for the selection of perovskites to achieve high-performance optoelectronic devices.In this review,the working mechanisms of PeSCs and PeLEDs are first demonstrated with the discussion on the factors which determine the device performance.We then examine the optoelectronic properties of perovskites with structures modulated from 3D,2D,1D to 0D,and analyze the corresponding structure-property relationships in terms of photo-electric and electric-photo conversion processes.Based on the unique optoelectronic properties of structurally modulated perovskites,we put forward the concept of structural assembling engineering that integrate the merits of different types of perovskites within one matrix and elaborate their excellent properties for applications of both PeSCs and PeLEDs.Finally,we discuss the potential challenges and provide our perspectives on the structural assembling engineering of perovskites for future optoelectronic applications. 展开更多
关键词 light-emitting diodes low-dimensional perovskites metal halide perovskites solar cells structural assembling structure modulation
原文传递
Recent progress of sugar amino acids: Synthetic strategies and applications as glycomimetics and peptidomimetics
14
作者 Guang-Zong Tian Xiao-Li Wang +3 位作者 Jing Hu Xue-Bin Wang Xiao-Qiang Guo Jian Yin 《Chinese Chemical Letters》 SCIE CAS CSCD 2015年第8期922-930,共9页
In order to meet the increasing demands for the development of large varieties of new molecules for discovering new drugs and materials, organic chemists are developing many novel multifunctional building blocks, whic... In order to meet the increasing demands for the development of large varieties of new molecules for discovering new drugs and materials, organic chemists are developing many novel multifunctional building blocks, which are assembled rationally to create ‘nature-like' and yet unnatural organic molecules with well-defined structures and useful properties. Sugar amino acids(SAAs), the carbohydrate derivatives bearing both amino and carboxylic acid functional groups, are important ones of these multifunctional building blocks, which can be used to create novel materials with potential applications as glycomimetics and peptidomimetics. This review will focus on recent synthetic strategies of SAAs and their applications in creating large number of structurally diverse glycomimetics and peptidomimetics. 展开更多
关键词 structurally carboxylic oligomer blocks assembled Fmoc amide carbohydrate diverse protected
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部