The DD6 nickel-based superalloy exhibits remarkably high temperature properties;therefore,it is employed as a crucial structural material in the aviation industry.Nevertheless,this material is difficult to process.Ult...The DD6 nickel-based superalloy exhibits remarkably high temperature properties;therefore,it is employed as a crucial structural material in the aviation industry.Nevertheless,this material is difficult to process.Ultrasonic-assisted drilling(UAD)combines the characteristics of vibration processing technology and conventional drilling technology,significantly improving the machinability of difficult-to-machine materials.Thus,UAD experiments were performed on micro-hole machining of DD6 superalloy in this study.The effects of amplitude,frequency,spindle speed,and feed rate on thrust force,machining quality,and drill bit wear were studied;thereafter,a comparison was drawn between these effects and those of conventional drilling(CD).The experimental results reveal that the thrust force decreases with an increase in spindle speed or a decrease in feed rate for both UAD and CD.UAD can significantly reduce the thrust force.With the same processing parameters,the greater the amplitude,the greater the reduction of the thrust force.The surface roughness of the hole wall produced by UAD is lower than that of CD.Compared with CD,UAD reduces the burr height,improves machining accuracy,and reduces drill bit wear.展开更多
As Ti-6 Al-4 V is a typical hard to machine material,especially in micro drilling aviation parts,chip breaking difficulty is of increasing interest to explore its further development.In this study,Longitudinal-Torsion...As Ti-6 Al-4 V is a typical hard to machine material,especially in micro drilling aviation parts,chip breaking difficulty is of increasing interest to explore its further development.In this study,Longitudinal-Torsional Ultrasonic Assisted Drilling(LTUAD)was employed to machine Ti-6 Al-4 V,and its feasibility was evaluated by comparing with Conventional Drilling(CD).By combining periodical characteristics and vibration models(the separated or the unseparated ultrasonic elliptical vibration),the influence of ultrasonic frequency on the intersection characteristics of trajectories were analyzed.And the intersection characteristics were divided into four categories:even periodicity,odd periodicity,non-odd and even periodicity and composite periodicity,indicating different capability for chip breaking.By applying the longitudinal-torsional compound vibration horn,the micro-hole drilling experiment was carried out on machining center.The chip morphology,the thrust force,and the burr height were discussed.Experimental results showed that the morphology of chips presented as smaller and more fragmentary ones in LTUAD compared with continuous helical conical ones and fold-shaped ones in CD.Compared with CD,the average values of the thrust force in LTUAD reduced by 1.98%to 24.9%.According to the burr around the hole exit in both LTUAD and CD,the height of the latter was greatly affected by the drilling parameters.And the burr around the exit of the hole were distributed rather evenly with smaller extension in LTUAD.Consequently,the LTUAD employed in micro-hole drilling was effective.展开更多
The development of deepwater oil fields has reached a new stage with the dramatic increase in water depth and the recent increasing demands of the economic development in the filed. The use of a Tension Leg Platform ...The development of deepwater oil fields has reached a new stage with the dramatic increase in water depth and the recent increasing demands of the economic development in the filed. The use of a Tension Leg Platform (TIP) combined with other systems, such as Floating Production Storage and Offloading (FPSO) system, Floating Production Unit (FPU) system, Tender Assisted Drilling (TAD) system, etc., has drawn the industry attention and increased significantly in the past few years. For the areas lacking of pipeline system, the use of TIP(s) combined with FPSO has been chosen to efficiently develop the deepwater fields. The TIP with a Tender Assisted Drilling system significantly reduces the payload of the platform and reduces the investment in the TIP system substantially. This opens the door for many new deepwater field developments to use the tension leg platform. The advantage of the TIP combined with a TAD system is more significant when several TIPs are used for the continuous development of the field. One of the applications for the TIP with a tender assisted drilling system can be in the development of an offshore marginal field. Owing to the increase of water depth, the conventional fixed platform model for the exploration of those fields becomes uneconomical. It also would be too expensive to use a large TIP structure for those marginal fields due to the large amount of initial investment. The TIP system with tender assisted drilling can be used to develop those fields economically. There are many marginal fields in China offshore, especially in shelf areas. The application of this field developing model, combined with the existing field developing experience in China, will open the door for many marginal field developments. This paper will review the application of the combined TIP system through some examples of completed/ongoing projects, and major technical issues encountered in those practices. The potential application of this technology in China deepwater development will be discussed in the end.展开更多
The paper provided an updated status of technology for deepwater field development, demonstrated the importance of its application through actual project example, and discussed some future technical development trends...The paper provided an updated status of technology for deepwater field development, demonstrated the importance of its application through actual project example, and discussed some future technical development trends. The focus was on the floating structures. By reviewing some of the engineering aspects of the project, the technology advancement, innovations and challenges in offshore engineering were discussed and demonstrated. The author’s view of technical challenges facing deepwater forwarding was discussed, which covered water depth limitations, new material application, installation methods, riser development and operational issues. An overview of technologies that will enable deepwater projects to be extended into new frontiers was presented.展开更多
基金This study was supported by the National Scholastic Athletics Foundation(NSAF)(Grant No.U1830122)the National Natural Science Foundation of China(Grant No.51775443).
文摘The DD6 nickel-based superalloy exhibits remarkably high temperature properties;therefore,it is employed as a crucial structural material in the aviation industry.Nevertheless,this material is difficult to process.Ultrasonic-assisted drilling(UAD)combines the characteristics of vibration processing technology and conventional drilling technology,significantly improving the machinability of difficult-to-machine materials.Thus,UAD experiments were performed on micro-hole machining of DD6 superalloy in this study.The effects of amplitude,frequency,spindle speed,and feed rate on thrust force,machining quality,and drill bit wear were studied;thereafter,a comparison was drawn between these effects and those of conventional drilling(CD).The experimental results reveal that the thrust force decreases with an increase in spindle speed or a decrease in feed rate for both UAD and CD.UAD can significantly reduce the thrust force.With the same processing parameters,the greater the amplitude,the greater the reduction of the thrust force.The surface roughness of the hole wall produced by UAD is lower than that of CD.Compared with CD,UAD reduces the burr height,improves machining accuracy,and reduces drill bit wear.
基金supported by the National Natural Science Foundation of China(No.51875179)。
文摘As Ti-6 Al-4 V is a typical hard to machine material,especially in micro drilling aviation parts,chip breaking difficulty is of increasing interest to explore its further development.In this study,Longitudinal-Torsional Ultrasonic Assisted Drilling(LTUAD)was employed to machine Ti-6 Al-4 V,and its feasibility was evaluated by comparing with Conventional Drilling(CD).By combining periodical characteristics and vibration models(the separated or the unseparated ultrasonic elliptical vibration),the influence of ultrasonic frequency on the intersection characteristics of trajectories were analyzed.And the intersection characteristics were divided into four categories:even periodicity,odd periodicity,non-odd and even periodicity and composite periodicity,indicating different capability for chip breaking.By applying the longitudinal-torsional compound vibration horn,the micro-hole drilling experiment was carried out on machining center.The chip morphology,the thrust force,and the burr height were discussed.Experimental results showed that the morphology of chips presented as smaller and more fragmentary ones in LTUAD compared with continuous helical conical ones and fold-shaped ones in CD.Compared with CD,the average values of the thrust force in LTUAD reduced by 1.98%to 24.9%.According to the burr around the hole exit in both LTUAD and CD,the height of the latter was greatly affected by the drilling parameters.And the burr around the exit of the hole were distributed rather evenly with smaller extension in LTUAD.Consequently,the LTUAD employed in micro-hole drilling was effective.
文摘The development of deepwater oil fields has reached a new stage with the dramatic increase in water depth and the recent increasing demands of the economic development in the filed. The use of a Tension Leg Platform (TIP) combined with other systems, such as Floating Production Storage and Offloading (FPSO) system, Floating Production Unit (FPU) system, Tender Assisted Drilling (TAD) system, etc., has drawn the industry attention and increased significantly in the past few years. For the areas lacking of pipeline system, the use of TIP(s) combined with FPSO has been chosen to efficiently develop the deepwater fields. The TIP with a Tender Assisted Drilling system significantly reduces the payload of the platform and reduces the investment in the TIP system substantially. This opens the door for many new deepwater field developments to use the tension leg platform. The advantage of the TIP combined with a TAD system is more significant when several TIPs are used for the continuous development of the field. One of the applications for the TIP with a tender assisted drilling system can be in the development of an offshore marginal field. Owing to the increase of water depth, the conventional fixed platform model for the exploration of those fields becomes uneconomical. It also would be too expensive to use a large TIP structure for those marginal fields due to the large amount of initial investment. The TIP system with tender assisted drilling can be used to develop those fields economically. There are many marginal fields in China offshore, especially in shelf areas. The application of this field developing model, combined with the existing field developing experience in China, will open the door for many marginal field developments. This paper will review the application of the combined TIP system through some examples of completed/ongoing projects, and major technical issues encountered in those practices. The potential application of this technology in China deepwater development will be discussed in the end.
文摘The paper provided an updated status of technology for deepwater field development, demonstrated the importance of its application through actual project example, and discussed some future technical development trends. The focus was on the floating structures. By reviewing some of the engineering aspects of the project, the technology advancement, innovations and challenges in offshore engineering were discussed and demonstrated. The author’s view of technical challenges facing deepwater forwarding was discussed, which covered water depth limitations, new material application, installation methods, riser development and operational issues. An overview of technologies that will enable deepwater projects to be extended into new frontiers was presented.