The classical algorithm of finding association rules generated by a frequent itemset has to generate all non-empty subsets of the frequent itemset as candidate set of consequents. Xiongfei Li aimed at this and propose...The classical algorithm of finding association rules generated by a frequent itemset has to generate all non-empty subsets of the frequent itemset as candidate set of consequents. Xiongfei Li aimed at this and proposed an improved algorithm. The algorithm finds all consequents layer by layer, so it is breadth-first. In this paper, we propose a new algorithm Generate Rules by using Set-Enumeration Tree (GRSET) which uses the structure of Set-Enumeration Tree and depth-first method to find all consequents of the association rules one by one and get all association rules correspond to the consequents. Experiments show GRSET algorithm to be practicable and efficient.展开更多
In this paper, we propose an efficient algorithm, called FFP-Growth (shortfor fast FP-Growth) , to mine frequent itemsets. Similar to FP-Growth, FFP-Growth searches theFP-tree in the bottom-up order, but need not cons...In this paper, we propose an efficient algorithm, called FFP-Growth (shortfor fast FP-Growth) , to mine frequent itemsets. Similar to FP-Growth, FFP-Growth searches theFP-tree in the bottom-up order, but need not construct conditional pattern bases and sub-FP-trees,thus, saving a substantial amount of time and space, and the FP-tree created by it is much smallerthan that created by TD-FP-Growth, hence improving efficiency. At the same time, FFP-Growth can beeasily extended for reducing the search space as TD-FP-Growth (M) and TD-FP-Growth (C). Experimentalresults show that the algorithm of this paper is effective and efficient.展开更多
Association rule mining is an important issue in data mining. The paper proposed an binary system based method to generate candidate frequent itemsets and corresponding supporting counts efficiently, which needs only ...Association rule mining is an important issue in data mining. The paper proposed an binary system based method to generate candidate frequent itemsets and corresponding supporting counts efficiently, which needs only some operations such as "and", "or" and "xor". Applying this idea in the existed distributed association rule mining al gorithm FDM, the improved algorithm BFDM is proposed. The theoretical analysis and experiment testify that BFDM is effective and efficient.展开更多
This paper presents some new algorithms to efficiently mine max frequent generalized itemsets (g-itemsets) and essential generalized association rules (g-rules). These are compact and general representations for a...This paper presents some new algorithms to efficiently mine max frequent generalized itemsets (g-itemsets) and essential generalized association rules (g-rules). These are compact and general representations for all frequent patterns and all strong association rules in the generalized environment. Our results fill an important gap among algorithms for frequent patterns and association rules by combining two concepts. First, generalized itemsets employ a taxonomy of items, rather than a flat list of items. This produces more natural frequent itemsets and associations such as (meat, milk) instead of (beef, milk), (chicken, milk), etc. Second, compact representations of frequent itemsets and strong rules, whose result size is exponentially smaller, can solve a standard dilemma in mining patterns: with small threshold values for support and confidence, the user is overwhelmed by the extraordinary number of identified patterns and associations; but with large threshold values, some interesting patterns and associations fail to be identified. Our algorithms can also expand those max frequent g-itemsets and essential g-rules into the much larger set of ordinary frequent g-itemsets and strong g-rules. While that expansion is not recommended in most practical cases, we do so in order to present a comparison with existing algorithms that only handle ordinary frequent g-itemsets. In this case, the new algorithm is shown to be thousands, and in some cases millions, of the time faster than previous algorithms. Further, the new algorithm succeeds in analyzing deeper taxonomies, with the depths of seven or more. Experimental results for previous algorithms limited themselves to taxonomies with depth at most three or four. In each of the two problems, a straightforward lattice-based approach is briefly discussed and then a classificationbased algorithm is developed. In particular, the two classification-based algorithms are MFGI_class for mining max frequent g-itemsets and EGR_class for mining essential g-rules. The classification-based algorithms are featured with conceptual classification trees and dynamic generation and pruning algorithms.展开更多
One of the obstacles of the efficient association rule mining is theexplosive expansion of data sets since it is costly or impossible to scan large databases, esp., formultiple times. A popular solution to improve the...One of the obstacles of the efficient association rule mining is theexplosive expansion of data sets since it is costly or impossible to scan large databases, esp., formultiple times. A popular solution to improve the speed and scalability of the association rulemining is to do the algorithm on a random sample instead of the entire database. But how toeffectively define and efficiently estimate the degree of error with respect to the outcome of thealgorithm, and how to determine the sample size needed are entangling researches until now. In thispaper, an effective and efficient algorithm is given based on the PAC (Probably Approximate Correct)learning theory to measure and estimate sample error. Then, a new adaptive, on-line, fast samplingstrategy - multi-scaling sampling - is presented inspired by MRA (Multi-Resolution Analysis) andShannon sampling theorem, for quickly obtaining acceptably approximate association rules atappropriate sample size. Both theoretical analysis and empirical study have showed that the Samplingstrategy can achieve a very good speed-accuracy trade-off.展开更多
Clustering in high-dimensional space is an important domain in data mining. It is the process of discovering groups in a high-dimensional dataset, in such way, that the similarity between the elements of the same clus...Clustering in high-dimensional space is an important domain in data mining. It is the process of discovering groups in a high-dimensional dataset, in such way, that the similarity between the elements of the same cluster is maximum and between different clusters is minimal. Many clustering algorithms are not applicable to high-dimensional space for its sparseness and decline properties. Dimensionality reduction is an effective method to solve this problem. The paper proposes a novel clustering algorithm CFSBC based on closed frequent itemsets derived from association rule mining, which can get the clustering attributes with high efficiency. The algorithm has several advantages. First, it deals effectively with the problem of dimensionality reduction. Second, it is applicable to different kinds of attributes. Third, it is suitable for very large data sets. Experiment shows that the proposed algorithm is effective and efficient. Key words clustering - closed frequent itemsets - association rule - clustering attributes CLC number TP 311 Foundation item: Supported by the National Natural Science Foundation of China (70371015)Biography: NI Wei-wei (1979-), male, Ph. D candidate, research direction: data mining and knowledge discovery.展开更多
A method for mining frequent itemsets by evaluating their probability of supports based on association analysis is presented. This paper obtains the probability of every 1\|itemset by scanning the database, then evalu...A method for mining frequent itemsets by evaluating their probability of supports based on association analysis is presented. This paper obtains the probability of every 1\|itemset by scanning the database, then evaluates the probability of every 2\|itemset, every 3\|itemset, every k \|itemset from the frequent 1\|itemsets and gains all the candidate frequent itemsets. This paper also scans the database for verifying the support of the candidate frequent itemsets. Last, the frequent itemsets are mined. The method reduces a lot of time of scanning database and shortens the computation time of the algorithm.展开更多
The problem of association rule mining has gained considerable prominence in the data mining community for its use as an important tool of knowledge discovery from large scale databases. And there has been a spurt of...The problem of association rule mining has gained considerable prominence in the data mining community for its use as an important tool of knowledge discovery from large scale databases. And there has been a spurt of research activities around this problem. However, traditional association rule mining may often derive many rules in which people are uninterested. This paper reports a generalization of association rule mining called φ association rule mining. It allows people to have different interests on different itemsets that arethe need of real application. Also, it can help to derive interesting rules and substantially reduce the amount of rules. An algorithm based on FP tree for mining φ frequent itemset is presented. It is shown by experiments that the proposed methodis efficient and scalable over large databases.展开更多
Association rules mining is a major data mining field that leads to discovery of associations and correlations among items in today’s big data environment. The conventional association rule mining focuses mainly on p...Association rules mining is a major data mining field that leads to discovery of associations and correlations among items in today’s big data environment. The conventional association rule mining focuses mainly on positive itemsets generated from frequently occurring itemsets (PFIS). However, there has been a significant study focused on infrequent itemsets with utilization of negative association rules to mine interesting frequent itemsets (NFIS) from transactions. In this work, we propose an efficient backward calculating negative frequent itemset algorithm namely EBC-NFIS for computing backward supports that can extract both positive and negative frequent itemsets synchronously from dataset. EBC-NFIS algorithm is based on popular e-NFIS algorithm that computes supports of negative itemsets from the supports of positive itemsets. The proposed algorithm makes use of previously computed supports from memory to minimize the computation time. In addition, association rules, i.e. positive and negative association rules (PNARs) are generated from discovered frequent itemsets using EBC-NFIS algorithm. The efficiency of the proposed algorithm is verified by several experiments and comparing results with e-NFIS algorithm. The experimental results confirm that the proposed algorithm successfully discovers NFIS and PNARs and runs significantly faster than conventional e-NFIS algorithm.展开更多
挖掘最大频繁项目集是多种数据挖掘应用中的关键问题,之前的很多研究都是采用Apriori类的候选项目集生成-检验方法.然而,候选项目集产生的代价是很高的,尤其是在存在大量强模式和/或长模式的时候.提出了一种快速的基于频繁模式树(FP-tr...挖掘最大频繁项目集是多种数据挖掘应用中的关键问题,之前的很多研究都是采用Apriori类的候选项目集生成-检验方法.然而,候选项目集产生的代价是很高的,尤其是在存在大量强模式和/或长模式的时候.提出了一种快速的基于频繁模式树(FP-tree)的最大频繁项目集挖掘DMFIA(discover maximum frequent itemsets algorithm)及其更新算法UMFIA(update maximum frequent itemsets algorithm).算法UMFIA将充分利用以前的挖掘结果来减少在更新的数据库中发现新的最大频繁项目集的费用.展开更多
基金Supported by the National Natural Science Foundation of China (No.60474022) the Natural Science Foundation of Henan Province(No. G2002026,200510475028)
文摘The classical algorithm of finding association rules generated by a frequent itemset has to generate all non-empty subsets of the frequent itemset as candidate set of consequents. Xiongfei Li aimed at this and proposed an improved algorithm. The algorithm finds all consequents layer by layer, so it is breadth-first. In this paper, we propose a new algorithm Generate Rules by using Set-Enumeration Tree (GRSET) which uses the structure of Set-Enumeration Tree and depth-first method to find all consequents of the association rules one by one and get all association rules correspond to the consequents. Experiments show GRSET algorithm to be practicable and efficient.
文摘In this paper, we propose an efficient algorithm, called FFP-Growth (shortfor fast FP-Growth) , to mine frequent itemsets. Similar to FP-Growth, FFP-Growth searches theFP-tree in the bottom-up order, but need not construct conditional pattern bases and sub-FP-trees,thus, saving a substantial amount of time and space, and the FP-tree created by it is much smallerthan that created by TD-FP-Growth, hence improving efficiency. At the same time, FFP-Growth can beeasily extended for reducing the search space as TD-FP-Growth (M) and TD-FP-Growth (C). Experimentalresults show that the algorithm of this paper is effective and efficient.
基金Supported by the National Natural Science Foun-dation of China (70371015)
文摘Association rule mining is an important issue in data mining. The paper proposed an binary system based method to generate candidate frequent itemsets and corresponding supporting counts efficiently, which needs only some operations such as "and", "or" and "xor". Applying this idea in the existed distributed association rule mining al gorithm FDM, the improved algorithm BFDM is proposed. The theoretical analysis and experiment testify that BFDM is effective and efficient.
文摘This paper presents some new algorithms to efficiently mine max frequent generalized itemsets (g-itemsets) and essential generalized association rules (g-rules). These are compact and general representations for all frequent patterns and all strong association rules in the generalized environment. Our results fill an important gap among algorithms for frequent patterns and association rules by combining two concepts. First, generalized itemsets employ a taxonomy of items, rather than a flat list of items. This produces more natural frequent itemsets and associations such as (meat, milk) instead of (beef, milk), (chicken, milk), etc. Second, compact representations of frequent itemsets and strong rules, whose result size is exponentially smaller, can solve a standard dilemma in mining patterns: with small threshold values for support and confidence, the user is overwhelmed by the extraordinary number of identified patterns and associations; but with large threshold values, some interesting patterns and associations fail to be identified. Our algorithms can also expand those max frequent g-itemsets and essential g-rules into the much larger set of ordinary frequent g-itemsets and strong g-rules. While that expansion is not recommended in most practical cases, we do so in order to present a comparison with existing algorithms that only handle ordinary frequent g-itemsets. In this case, the new algorithm is shown to be thousands, and in some cases millions, of the time faster than previous algorithms. Further, the new algorithm succeeds in analyzing deeper taxonomies, with the depths of seven or more. Experimental results for previous algorithms limited themselves to taxonomies with depth at most three or four. In each of the two problems, a straightforward lattice-based approach is briefly discussed and then a classificationbased algorithm is developed. In particular, the two classification-based algorithms are MFGI_class for mining max frequent g-itemsets and EGR_class for mining essential g-rules. The classification-based algorithms are featured with conceptual classification trees and dynamic generation and pruning algorithms.
基金CAS Project of Brain and Mind Science,国家高技术研究发展计划(863计划),国家重点基础研究发展计划(973计划),国家自然科学基金,湖南省自然科学基金
文摘One of the obstacles of the efficient association rule mining is theexplosive expansion of data sets since it is costly or impossible to scan large databases, esp., formultiple times. A popular solution to improve the speed and scalability of the association rulemining is to do the algorithm on a random sample instead of the entire database. But how toeffectively define and efficiently estimate the degree of error with respect to the outcome of thealgorithm, and how to determine the sample size needed are entangling researches until now. In thispaper, an effective and efficient algorithm is given based on the PAC (Probably Approximate Correct)learning theory to measure and estimate sample error. Then, a new adaptive, on-line, fast samplingstrategy - multi-scaling sampling - is presented inspired by MRA (Multi-Resolution Analysis) andShannon sampling theorem, for quickly obtaining acceptably approximate association rules atappropriate sample size. Both theoretical analysis and empirical study have showed that the Samplingstrategy can achieve a very good speed-accuracy trade-off.
文摘Clustering in high-dimensional space is an important domain in data mining. It is the process of discovering groups in a high-dimensional dataset, in such way, that the similarity between the elements of the same cluster is maximum and between different clusters is minimal. Many clustering algorithms are not applicable to high-dimensional space for its sparseness and decline properties. Dimensionality reduction is an effective method to solve this problem. The paper proposes a novel clustering algorithm CFSBC based on closed frequent itemsets derived from association rule mining, which can get the clustering attributes with high efficiency. The algorithm has several advantages. First, it deals effectively with the problem of dimensionality reduction. Second, it is applicable to different kinds of attributes. Third, it is suitable for very large data sets. Experiment shows that the proposed algorithm is effective and efficient. Key words clustering - closed frequent itemsets - association rule - clustering attributes CLC number TP 311 Foundation item: Supported by the National Natural Science Foundation of China (70371015)Biography: NI Wei-wei (1979-), male, Ph. D candidate, research direction: data mining and knowledge discovery.
文摘A method for mining frequent itemsets by evaluating their probability of supports based on association analysis is presented. This paper obtains the probability of every 1\|itemset by scanning the database, then evaluates the probability of every 2\|itemset, every 3\|itemset, every k \|itemset from the frequent 1\|itemsets and gains all the candidate frequent itemsets. This paper also scans the database for verifying the support of the candidate frequent itemsets. Last, the frequent itemsets are mined. The method reduces a lot of time of scanning database and shortens the computation time of the algorithm.
文摘The problem of association rule mining has gained considerable prominence in the data mining community for its use as an important tool of knowledge discovery from large scale databases. And there has been a spurt of research activities around this problem. However, traditional association rule mining may often derive many rules in which people are uninterested. This paper reports a generalization of association rule mining called φ association rule mining. It allows people to have different interests on different itemsets that arethe need of real application. Also, it can help to derive interesting rules and substantially reduce the amount of rules. An algorithm based on FP tree for mining φ frequent itemset is presented. It is shown by experiments that the proposed methodis efficient and scalable over large databases.
文摘Association rules mining is a major data mining field that leads to discovery of associations and correlations among items in today’s big data environment. The conventional association rule mining focuses mainly on positive itemsets generated from frequently occurring itemsets (PFIS). However, there has been a significant study focused on infrequent itemsets with utilization of negative association rules to mine interesting frequent itemsets (NFIS) from transactions. In this work, we propose an efficient backward calculating negative frequent itemset algorithm namely EBC-NFIS for computing backward supports that can extract both positive and negative frequent itemsets synchronously from dataset. EBC-NFIS algorithm is based on popular e-NFIS algorithm that computes supports of negative itemsets from the supports of positive itemsets. The proposed algorithm makes use of previously computed supports from memory to minimize the computation time. In addition, association rules, i.e. positive and negative association rules (PNARs) are generated from discovered frequent itemsets using EBC-NFIS algorithm. The efficiency of the proposed algorithm is verified by several experiments and comparing results with e-NFIS algorithm. The experimental results confirm that the proposed algorithm successfully discovers NFIS and PNARs and runs significantly faster than conventional e-NFIS algorithm.
文摘挖掘最大频繁项目集是多种数据挖掘应用中的关键问题,之前的很多研究都是采用Apriori类的候选项目集生成-检验方法.然而,候选项目集产生的代价是很高的,尤其是在存在大量强模式和/或长模式的时候.提出了一种快速的基于频繁模式树(FP-tree)的最大频繁项目集挖掘DMFIA(discover maximum frequent itemsets algorithm)及其更新算法UMFIA(update maximum frequent itemsets algorithm).算法UMFIA将充分利用以前的挖掘结果来减少在更新的数据库中发现新的最大频繁项目集的费用.