Digital Elevation Models (DEMs) provide one of the most useful digital datasets for a wide range of users. Both the Shuttle Radar Topographic Mission (STRM V.4.1) topography and the Advanced Spaceborne Thermal Emissio...Digital Elevation Models (DEMs) provide one of the most useful digital datasets for a wide range of users. Both the Shuttle Radar Topographic Mission (STRM V.4.1) topography and the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model (ASTER-GDEM V.2) have been widely used in geomorphology, hydrology, tectonic, and others since they were made access to the public. The magnitude of vertical errors of two near-global DEMs—SRTM and ASTER-GDEM is compared and validated against a reference DEM which has a relatively high precision of 1:25,000 scale constructed from topographical map. Moreover, the reference DEM, ASTER-GDEM and SRTM were used as basic topographic data to extract some Morphometric index. The parameters like slope and shaded reflectance maps, were derived from the elevation distribution to provide a more sensitive indication of DEM quality. A square area in the North East of Tunisia was selected as a case study to test and evaluate the elevation accuracy of ASTER-GDEM and SRTM. The relative accuracy approach and absolute accuracy were adopted to evaluate global DEMs. The comparisons show that SRTM overestimates and ASTER-GDEM underestimates elevations, both DEMs can be used to extract the elevations of required geometric data,?i.e.?sub watershed boundaries, drainage information and cross sections. However, small errors still exist in. The lower root mean square errors values indicate that SRTM is comparatively more accurate than ASTER-GDEM.展开更多
文摘Digital Elevation Models (DEMs) provide one of the most useful digital datasets for a wide range of users. Both the Shuttle Radar Topographic Mission (STRM V.4.1) topography and the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model (ASTER-GDEM V.2) have been widely used in geomorphology, hydrology, tectonic, and others since they were made access to the public. The magnitude of vertical errors of two near-global DEMs—SRTM and ASTER-GDEM is compared and validated against a reference DEM which has a relatively high precision of 1:25,000 scale constructed from topographical map. Moreover, the reference DEM, ASTER-GDEM and SRTM were used as basic topographic data to extract some Morphometric index. The parameters like slope and shaded reflectance maps, were derived from the elevation distribution to provide a more sensitive indication of DEM quality. A square area in the North East of Tunisia was selected as a case study to test and evaluate the elevation accuracy of ASTER-GDEM and SRTM. The relative accuracy approach and absolute accuracy were adopted to evaluate global DEMs. The comparisons show that SRTM overestimates and ASTER-GDEM underestimates elevations, both DEMs can be used to extract the elevations of required geometric data,?i.e.?sub watershed boundaries, drainage information and cross sections. However, small errors still exist in. The lower root mean square errors values indicate that SRTM is comparatively more accurate than ASTER-GDEM.