As a traditional Chinese medicine,the root of Astragalus membranaceus var.mongholicus(AMM) or A.membranaceus(AM) has been widely used in China and other Asian countries for thousands of years.Till now,the flavonoids,p...As a traditional Chinese medicine,the root of Astragalus membranaceus var.mongholicus(AMM) or A.membranaceus(AM) has been widely used in China and other Asian countries for thousands of years.Till now,the flavonoids,phenolic acids and saponins are considered as the main active components contributing to their therapeutic effect in these plants.In order to clarify the distribution and contents of these compounds in different organs of these plants,a rapid and sensitive analytical method for simultaneous determination of 25 active compounds including seven types(i.e.dihydroflavones,isoflavane,isoflavones,flavones.pterocarpans,phenolic acid and saponins) within 10 min was established using ultra-pressure liquid chromatography coupled with tandem mass spectrometry(UPLC-MS/MS).Then,the established method was fully validated and successfully applied to the determination of the contents of these analytes in different parts(root,rhizome,stem,leaf and flower) of AMM and AM.The results indicated that the contents of the same type of compounds in two different species plants were significantly different.Moreover,the obvious differences were also found for the distribution and contents of different type of compounds in five organs of the same species.The present study could provide necessary information for the rational development and utilization of AMM and AM resource.展开更多
[Objective] The research aimed to study the tissue culture technology and callus induction by radiation mutation of A. membranaceus Bge. [ Method ] With the different parts of Astragalus membranaceus Bge. var. monghol...[Objective] The research aimed to study the tissue culture technology and callus induction by radiation mutation of A. membranaceus Bge. [ Method ] With the different parts of Astragalus membranaceus Bge. var. mongholicus ( Bge. ) Hsiao aseptic seedling as explants ( leaves, cotyledons, hypocotyls) induced callus, and cotyledon and hypocotyls taken by the method of radiation mutation were studied. [ Result]The results showed that the three explants had relatively high callus induced rate in the medium which respectively made up of MS +6-BA 2.0 mg/L + NAA2.0 mg/L, LS +6-BA2.0 mg/L +NAA0.1 mg/L, MS + 6-BA2.0 rng/L + NAA2.0 rag/L; the optimum mutation time of hypocotyls and cotyledons was 15 minutes; the growth of the callus induced from hypocotyls would be better as the mutation time increased, but when it reached a certain time the growth would be weaken, the induction rate also would be reduced. [ Conclusion] This study will provide the scientific reference in tissue culture and mutation breeding of A. membranaceus Bge.展开更多
Two major isoflavone glycosides [calycosin 7-O-β-D-glucopyranoside (1) and ononin (2)] and their aglycones [calycosin (3) and formononetin (4)] were simultaneously quantified with HPLC/DAD method. Two unknown...Two major isoflavone glycosides [calycosin 7-O-β-D-glucopyranoside (1) and ononin (2)] and their aglycones [calycosin (3) and formononetin (4)] were simultaneously quantified with HPLC/DAD method. Two unknown compounds were identified as calycosin 7-O-β-D-glucopyranoside-6'"-O-malonate (U1) and formononetin 7-O-β-D-glucopymnoside-6'"-O-malonate (U2), respectively, with LC/MS^n. Raw Radix astragli were shown to have higher contents of isoflavone glycosides (1, 2), but lower contents of aglycones (3, 4) than the processed herbal materials. After being moistened with water and stored up for 24 h at 35 ℃, the glycosides and their m_alonates were almost completely transformed to their corresponding aglycones. The different contents of the isoflavone glycosides and their aglycones in raw and processed Radix astragali materials might be due to enzymolysis of the glycosides during processing.展开更多
Astragalus membranaceus var.mongholicus(AMM),a member of the Leguminosae,is one of the most important medicinal plants worldwide.The dried roots of AMM have a wide range of pharmacological effects and are a traditiona...Astragalus membranaceus var.mongholicus(AMM),a member of the Leguminosae,is one of the most important medicinal plants worldwide.The dried roots of AMM have a wide range of pharmacological effects and are a traditional Chinese medicine.Here,we report the first chromosome-level reference genome of AMM,comprising nine pseudochromosomes with a total size of 1.47 Gb and 27868 protein-encoding genes.Comparative genomic analysis reveals that AMM has not experienced an independent wholegenome duplication(WGD)event after the WGD event shared by the Papilionoideae species.Analysis of long terminal repeat retrotransposons suggests a recent burst of these elements at approximately 0.13 million years ago,which may explain the large size of the AMM genome.Multiple gene families involved in the biosynthesis of triterpenoids and flavonoids were expanded,and our data indicate that tandemduplication has been the main driver for expansion of these families.Among the expanded families,the phenylalanine ammonia-lyase gene family was primarily expressed in the roots of AMM,suggesting their roles in the biosynthesis of phenylpropanoid compounds.The functional versatility of 2,3-oxidosqualene cyclase genes in cluster Ⅲ may play a critical role in the diversification of triterpenoids in AMM.Our findings provide novel insights into triterpenoid and flavonoid biosynthesis and can facilitate future research on the genetics and medical applications of AMM.展开更多
Astragali Radix(AR),known as Huangqi in China,is one of the most popular herbal medicines learnt worldwide to reinforce Qi(the vital energy).AR is traditionally prepared from the dried roots of Astragalus membranaceus...Astragali Radix(AR),known as Huangqi in China,is one of the most popular herbal medicines learnt worldwide to reinforce Qi(the vital energy).AR is traditionally prepared from the dried roots of Astragalus membranaceus or A.membranaceus var.mongholicus.It has been reported to have cardiotonic,hepatoprotective,hypotensive,immunostimulant,anti-aging,anti-oxidative,antidiabetic,and anti-inflammatory activities.The bioactive compounds were found to be flavonoids,saponins,polysaccharides,amino acids,and some trace elements.The present paper reviews the studies on AR including history,phytochemistry studies,pharmacological functions,and clinical application in recent years.展开更多
基金supported by the National Natural Science Foundation of China(No.81473538,81873189)the Key R&D Program of Ningxia Hui Autonomous Region,China(2017BY079,2018ZWYQ0077)China Agricultural Research System(CARS-21)
文摘As a traditional Chinese medicine,the root of Astragalus membranaceus var.mongholicus(AMM) or A.membranaceus(AM) has been widely used in China and other Asian countries for thousands of years.Till now,the flavonoids,phenolic acids and saponins are considered as the main active components contributing to their therapeutic effect in these plants.In order to clarify the distribution and contents of these compounds in different organs of these plants,a rapid and sensitive analytical method for simultaneous determination of 25 active compounds including seven types(i.e.dihydroflavones,isoflavane,isoflavones,flavones.pterocarpans,phenolic acid and saponins) within 10 min was established using ultra-pressure liquid chromatography coupled with tandem mass spectrometry(UPLC-MS/MS).Then,the established method was fully validated and successfully applied to the determination of the contents of these analytes in different parts(root,rhizome,stem,leaf and flower) of AMM and AM.The results indicated that the contents of the same type of compounds in two different species plants were significantly different.Moreover,the obvious differences were also found for the distribution and contents of different type of compounds in five organs of the same species.The present study could provide necessary information for the rational development and utilization of AMM and AM resource.
文摘[Objective] The research aimed to study the tissue culture technology and callus induction by radiation mutation of A. membranaceus Bge. [ Method ] With the different parts of Astragalus membranaceus Bge. var. mongholicus ( Bge. ) Hsiao aseptic seedling as explants ( leaves, cotyledons, hypocotyls) induced callus, and cotyledon and hypocotyls taken by the method of radiation mutation were studied. [ Result]The results showed that the three explants had relatively high callus induced rate in the medium which respectively made up of MS +6-BA 2.0 mg/L + NAA2.0 mg/L, LS +6-BA2.0 mg/L +NAA0.1 mg/L, MS + 6-BA2.0 rng/L + NAA2.0 rag/L; the optimum mutation time of hypocotyls and cotyledons was 15 minutes; the growth of the callus induced from hypocotyls would be better as the mutation time increased, but when it reached a certain time the growth would be weaken, the induction rate also would be reduced. [ Conclusion] This study will provide the scientific reference in tissue culture and mutation breeding of A. membranaceus Bge.
基金National Natural Science Foundation of China(Grant No.20432030 and 20742005).
文摘Two major isoflavone glycosides [calycosin 7-O-β-D-glucopyranoside (1) and ononin (2)] and their aglycones [calycosin (3) and formononetin (4)] were simultaneously quantified with HPLC/DAD method. Two unknown compounds were identified as calycosin 7-O-β-D-glucopyranoside-6'"-O-malonate (U1) and formononetin 7-O-β-D-glucopymnoside-6'"-O-malonate (U2), respectively, with LC/MS^n. Raw Radix astragli were shown to have higher contents of isoflavone glycosides (1, 2), but lower contents of aglycones (3, 4) than the processed herbal materials. After being moistened with water and stored up for 24 h at 35 ℃, the glycosides and their m_alonates were almost completely transformed to their corresponding aglycones. The different contents of the isoflavone glycosides and their aglycones in raw and processed Radix astragali materials might be due to enzymolysis of the glycosides during processing.
基金supported by grants from the City-University Cooperation Project of China(201904710111639).
文摘Astragalus membranaceus var.mongholicus(AMM),a member of the Leguminosae,is one of the most important medicinal plants worldwide.The dried roots of AMM have a wide range of pharmacological effects and are a traditional Chinese medicine.Here,we report the first chromosome-level reference genome of AMM,comprising nine pseudochromosomes with a total size of 1.47 Gb and 27868 protein-encoding genes.Comparative genomic analysis reveals that AMM has not experienced an independent wholegenome duplication(WGD)event after the WGD event shared by the Papilionoideae species.Analysis of long terminal repeat retrotransposons suggests a recent burst of these elements at approximately 0.13 million years ago,which may explain the large size of the AMM genome.Multiple gene families involved in the biosynthesis of triterpenoids and flavonoids were expanded,and our data indicate that tandemduplication has been the main driver for expansion of these families.Among the expanded families,the phenylalanine ammonia-lyase gene family was primarily expressed in the roots of AMM,suggesting their roles in the biosynthesis of phenylpropanoid compounds.The functional versatility of 2,3-oxidosqualene cyclase genes in cluster Ⅲ may play a critical role in the diversification of triterpenoids in AMM.Our findings provide novel insights into triterpenoid and flavonoid biosynthesis and can facilitate future research on the genetics and medical applications of AMM.
文摘Astragali Radix(AR),known as Huangqi in China,is one of the most popular herbal medicines learnt worldwide to reinforce Qi(the vital energy).AR is traditionally prepared from the dried roots of Astragalus membranaceus or A.membranaceus var.mongholicus.It has been reported to have cardiotonic,hepatoprotective,hypotensive,immunostimulant,anti-aging,anti-oxidative,antidiabetic,and anti-inflammatory activities.The bioactive compounds were found to be flavonoids,saponins,polysaccharides,amino acids,and some trace elements.The present paper reviews the studies on AR including history,phytochemistry studies,pharmacological functions,and clinical application in recent years.