Background:The dysregulation of Isocitrate dehydrogenase(IDH)and the subsequent production of 2-Hydroxyglutrate(2HG)may alter the expression of epigenetic proteins in Grade 4 astrocytoma.The interplay mechanism betwee...Background:The dysregulation of Isocitrate dehydrogenase(IDH)and the subsequent production of 2-Hydroxyglutrate(2HG)may alter the expression of epigenetic proteins in Grade 4 astrocytoma.The interplay mechanism between IDH,O-6-methylguanine-DNA methyltransferase(MGMT)-promoter methylation,and protein methyltransferase proteins-5(PRMT5)activity,with tumor progression has never been described.Methods:A retrospective cohort of 34 patients with G4 astrocytoma is classified into IDH-mutant and IDH-wildtype tumors.Both groups were tested for MGMT-promoter methylation and PRMT5 through methylation-specific and gene expression PCR analysis.Inter-cohort statistical significance was evaluated.Results:Both IDH-mutant WHO grade 4 astrocytomas(n=22,64.7%)and IDH-wildtype glioblastomas(n=12,35.3%)had upregulated PRMT5 gene expression except in one case.Out of the 22 IDH-mutant tumors,10(45.5%)tumors showed MGMT-promoter methylation and 12(54.5%)tumors had unmethylated MGMT.All IDH-wildtype tumors had unmethylated MGMT.There was a statistically significant relationship between MGMT-promoter methylation and IDH in G4 astrocytoma(p-value=0.006).Statistically significant differences in progression-free survival(PFS)were also observed among all G4 astrocytomas that expressed PRMT5 and received either temozolomide(TMZ)or TMZ plus other chemotherapies,regardless of their IDH or MGMT-methylation status(p-value=0.0014).Specifically,IDH-mutant tumors that had upregulated PRMT5 activity and MGMT-promoter methylation,who received only TMZ,have exhibited longer PFS.Conclusions:The relationship between PRMT5,MGMT-promoter,and IDH is not tridirectional.However,accumulation of D2-hydroxyglutarate(2-HG),which partially activates 2-OG-dependent deoxygenase,may not affect their activities.In IDH-wildtype glioblastomas,the 2HG-2OG pathway is typically inactive,leading to PRMT5 upregulation.TMZ alone,compared to TMZ-plus,can increase PFS in upregulated PRMT5 tumors.Thus,using a PRMT5 inhibitor in G4 astrocytomas may help in tumor regression.展开更多
Glioblastoma multiforme(GBM)is an aggressive primary brain tumor characterized by extensive heterogeneity and vascular proliferation.Hypoxic conditions in the tissue microenvironment are considered a pivotal player le...Glioblastoma multiforme(GBM)is an aggressive primary brain tumor characterized by extensive heterogeneity and vascular proliferation.Hypoxic conditions in the tissue microenvironment are considered a pivotal player leading tumor progression.Specifically,hypoxia is known to activate inducible factors,such as hypoxia-inducible factor 1alpha(HIF-1α),which in turn can stimulate tumor neo-angiogenesis through activation of various downward mediators,such as the vascular endothelial growth factor(VEGF).Here,we aimed to explore the role of HIF-1α/VEGF immunophenotypes alone and in combination with other prognostic markers or clinical and image analysis data,as potential biomarkers of GBM prognosis and treatment efficacy.We performed a systematic review(Medline/Embase,and Pubmed database search was completed by 16th of April 2024 by two independent teams;PRISMA 2020).We evaluated methods of immunoassays,cell viability,or animal or patient survival methods of the retrieved studies to assess unbiased data.We used inclusion criteria,such as the evaluation of GBM prognosis based on HIF-1α/VEGF expression,other biomarkers or clinical and imaging manifestations in GBM related to HIF-1α/VEGF expression,application of immunoassays for protein expression,and evaluation of the effectiveness of GBM therapeutic strategies based on HIF-1α/VEGF expression.We used exclusion criteria,such as data not reporting both HIF-1αand VEGF or prognosis.We included 50 studies investigating in total 1319 GBM human specimens,18 different cell lines or GBM-derived stem cells,and 6 different animal models,to identify the association of HIF-1α/VEGF immunophenotypes,and with other prognostic factors,clinical and macroscopic data in GBM prognosis and therapeutic approaches.We found that increased HIF-1α/VEGF expression in GBM correlates with oncogenic factors,such as miR-210-3p,Oct4,AKT,COX-2,PDGF-C,PLDO3,M2 polarization,or ALK,leading to unfavorable survival.Reduced HIF-1α/VEGF expression correlates with FIH-1,ADNP,or STAT1 upregulation,as well as with clinical manifestations,like epileptogenicity,and a favorable prognosis of GBM.Based on our data,HIF-1αor VEGF immunophenotypes may be a useful tool to clarify MRI-PET imaging data distinguishing between GBM tumor progression and pseudoprogression.Finally,HIF-1α/VEGF immunophenotypes can reflect GBM treatment efficacy,including combined first-line treatment with histone deacetylase inhibitors,thimerosal,or an active metabolite of irinotecan,as well as STAT3 inhibitors alone,and resulting in a favorable tumor prognosis and patient survival.These data were supported by a combination of variable methods used to evaluate HIF-1α/VEGF immunophenotypes.Data limitations may include the use of less sensitive detection methods in some cases.Overall,our data support HIF-1α/VEGF’s role as biomarkers of GBM prognosis and treatment efficacy.展开更多
Background The degree of pathological microvascular proliferation is an important element in evaluation of the astrocytoma grade. This study was aimed to quantitatively assess the microvascular permeability of brain a...Background The degree of pathological microvascular proliferation is an important element in evaluation of the astrocytoma grade. This study was aimed to quantitatively assess the microvascular permeability of brain astrocytoma with the volume transfer constant (Ktrans) and volume of extravascular extracellular space per unit volume of tissue (Ve) from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and to evaluate the effectiveness of the Ktr^n' and Ve in the grading of astrocytoma. Methods The highest values of the Kt~~s and Ve of 67 patients with astrocytoma (27 with grade II, 12 with grade III, and 28 with grade IV) were obtained. The comparisons of the differences of the Ktrans and Ve between the different grades were conducted using the Mann-Whitney rank-sum tests. Spearman's rank correlation coefficients were determined between Ktrans values, Ve values and astrocytoma grades. Receiver operating characteristic (ROC) curve analyses were performed to determine the cut-off values for the Ktrans and Ve to distinguish between the different grades of astrocytoma. Results There were significant differences (P〈0.001) between the different grades in the Ktrans values and Ve values, except for grades III and IV. The Ktrans values and Ve values were both correlated with astrocytoma grades (both P〈0.001). The ROC curve analyses showed that the cut-off values for the Ktrans and Ve provided the best combination of sensitivity and specificity in distinguishing between grade II and grade III or IV astrocytomas. Conclusions DCE-MRI can play an important role in assessing the microvascular permeability and the grading of brain astrocytoma.展开更多
文摘Background:The dysregulation of Isocitrate dehydrogenase(IDH)and the subsequent production of 2-Hydroxyglutrate(2HG)may alter the expression of epigenetic proteins in Grade 4 astrocytoma.The interplay mechanism between IDH,O-6-methylguanine-DNA methyltransferase(MGMT)-promoter methylation,and protein methyltransferase proteins-5(PRMT5)activity,with tumor progression has never been described.Methods:A retrospective cohort of 34 patients with G4 astrocytoma is classified into IDH-mutant and IDH-wildtype tumors.Both groups were tested for MGMT-promoter methylation and PRMT5 through methylation-specific and gene expression PCR analysis.Inter-cohort statistical significance was evaluated.Results:Both IDH-mutant WHO grade 4 astrocytomas(n=22,64.7%)and IDH-wildtype glioblastomas(n=12,35.3%)had upregulated PRMT5 gene expression except in one case.Out of the 22 IDH-mutant tumors,10(45.5%)tumors showed MGMT-promoter methylation and 12(54.5%)tumors had unmethylated MGMT.All IDH-wildtype tumors had unmethylated MGMT.There was a statistically significant relationship between MGMT-promoter methylation and IDH in G4 astrocytoma(p-value=0.006).Statistically significant differences in progression-free survival(PFS)were also observed among all G4 astrocytomas that expressed PRMT5 and received either temozolomide(TMZ)or TMZ plus other chemotherapies,regardless of their IDH or MGMT-methylation status(p-value=0.0014).Specifically,IDH-mutant tumors that had upregulated PRMT5 activity and MGMT-promoter methylation,who received only TMZ,have exhibited longer PFS.Conclusions:The relationship between PRMT5,MGMT-promoter,and IDH is not tridirectional.However,accumulation of D2-hydroxyglutarate(2-HG),which partially activates 2-OG-dependent deoxygenase,may not affect their activities.In IDH-wildtype glioblastomas,the 2HG-2OG pathway is typically inactive,leading to PRMT5 upregulation.TMZ alone,compared to TMZ-plus,can increase PFS in upregulated PRMT5 tumors.Thus,using a PRMT5 inhibitor in G4 astrocytomas may help in tumor regression.
文摘Glioblastoma multiforme(GBM)is an aggressive primary brain tumor characterized by extensive heterogeneity and vascular proliferation.Hypoxic conditions in the tissue microenvironment are considered a pivotal player leading tumor progression.Specifically,hypoxia is known to activate inducible factors,such as hypoxia-inducible factor 1alpha(HIF-1α),which in turn can stimulate tumor neo-angiogenesis through activation of various downward mediators,such as the vascular endothelial growth factor(VEGF).Here,we aimed to explore the role of HIF-1α/VEGF immunophenotypes alone and in combination with other prognostic markers or clinical and image analysis data,as potential biomarkers of GBM prognosis and treatment efficacy.We performed a systematic review(Medline/Embase,and Pubmed database search was completed by 16th of April 2024 by two independent teams;PRISMA 2020).We evaluated methods of immunoassays,cell viability,or animal or patient survival methods of the retrieved studies to assess unbiased data.We used inclusion criteria,such as the evaluation of GBM prognosis based on HIF-1α/VEGF expression,other biomarkers or clinical and imaging manifestations in GBM related to HIF-1α/VEGF expression,application of immunoassays for protein expression,and evaluation of the effectiveness of GBM therapeutic strategies based on HIF-1α/VEGF expression.We used exclusion criteria,such as data not reporting both HIF-1αand VEGF or prognosis.We included 50 studies investigating in total 1319 GBM human specimens,18 different cell lines or GBM-derived stem cells,and 6 different animal models,to identify the association of HIF-1α/VEGF immunophenotypes,and with other prognostic factors,clinical and macroscopic data in GBM prognosis and therapeutic approaches.We found that increased HIF-1α/VEGF expression in GBM correlates with oncogenic factors,such as miR-210-3p,Oct4,AKT,COX-2,PDGF-C,PLDO3,M2 polarization,or ALK,leading to unfavorable survival.Reduced HIF-1α/VEGF expression correlates with FIH-1,ADNP,or STAT1 upregulation,as well as with clinical manifestations,like epileptogenicity,and a favorable prognosis of GBM.Based on our data,HIF-1αor VEGF immunophenotypes may be a useful tool to clarify MRI-PET imaging data distinguishing between GBM tumor progression and pseudoprogression.Finally,HIF-1α/VEGF immunophenotypes can reflect GBM treatment efficacy,including combined first-line treatment with histone deacetylase inhibitors,thimerosal,or an active metabolite of irinotecan,as well as STAT3 inhibitors alone,and resulting in a favorable tumor prognosis and patient survival.These data were supported by a combination of variable methods used to evaluate HIF-1α/VEGF immunophenotypes.Data limitations may include the use of less sensitive detection methods in some cases.Overall,our data support HIF-1α/VEGF’s role as biomarkers of GBM prognosis and treatment efficacy.
文摘Background The degree of pathological microvascular proliferation is an important element in evaluation of the astrocytoma grade. This study was aimed to quantitatively assess the microvascular permeability of brain astrocytoma with the volume transfer constant (Ktrans) and volume of extravascular extracellular space per unit volume of tissue (Ve) from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and to evaluate the effectiveness of the Ktr^n' and Ve in the grading of astrocytoma. Methods The highest values of the Kt~~s and Ve of 67 patients with astrocytoma (27 with grade II, 12 with grade III, and 28 with grade IV) were obtained. The comparisons of the differences of the Ktrans and Ve between the different grades were conducted using the Mann-Whitney rank-sum tests. Spearman's rank correlation coefficients were determined between Ktrans values, Ve values and astrocytoma grades. Receiver operating characteristic (ROC) curve analyses were performed to determine the cut-off values for the Ktrans and Ve to distinguish between the different grades of astrocytoma. Results There were significant differences (P〈0.001) between the different grades in the Ktrans values and Ve values, except for grades III and IV. The Ktrans values and Ve values were both correlated with astrocytoma grades (both P〈0.001). The ROC curve analyses showed that the cut-off values for the Ktrans and Ve provided the best combination of sensitivity and specificity in distinguishing between grade II and grade III or IV astrocytomas. Conclusions DCE-MRI can play an important role in assessing the microvascular permeability and the grading of brain astrocytoma.