We describe and analyze observations of mutual events of Galilean satellites made at the Yunnan Observatory in February 2003 from CCD imaging for the first time in China. Astrometric positions were deduced from these ...We describe and analyze observations of mutual events of Galilean satellites made at the Yunnan Observatory in February 2003 from CCD imaging for the first time in China. Astrometric positions were deduced from these photometric observations by modelling the relative motion and the photometry of the involved satellites during each event.展开更多
The relationship between the k<SUB>2</SUB>/Q of the Galilean satellites and the k<SUB>2J</SUB>/Q<SUB>J</SUB> of Jupiter is derived from energy and momentum considerations. Calculati...The relationship between the k<SUB>2</SUB>/Q of the Galilean satellites and the k<SUB>2J</SUB>/Q<SUB>J</SUB> of Jupiter is derived from energy and momentum considerations. Calculations suggest that the Galilean satellites can be divided into two classes according to their Q values: Io and Ganymede have values between 10 and 50, while Europa and Callisto have values ranging from 200 to 700. The tidal contributions of the Galilean satellites to Jupiter's rotation are estimated. The main deceleration of Jupiter, which is about 99.04% of the total, comes from Io.展开更多
The Closeby Habitable Exoplanet Survey(CHES) mission is proposed to discover habitable-zone Earth-like planets of nearby solar-type stars(~10 pc away from our solar system) via microarcsecond relative astrometry.The m...The Closeby Habitable Exoplanet Survey(CHES) mission is proposed to discover habitable-zone Earth-like planets of nearby solar-type stars(~10 pc away from our solar system) via microarcsecond relative astrometry.The major scientific objectives of CHES are:to search for Earth Twins or terrestrial planets in habitable zones orbiting100 FGK nearby stars;further to conduct a comprehensive survey and extensively characterize nearby planetary systems.The primary payload is a high-quality,low-distortion,high-stability telescope.The optical subsystem is a coaxial three-mirror anastigmat(TMA) with a 1.2 m-aperture,0°.44 × 0°.44 field of view and 500 nm-900 nm working wave band.The camera focal plane is composed of a mosaic of 81 scientific CMOS detectors each with4 k × 4 k pixels.The heterodyne laser interferometric calibration technology is employed to ensure microarcsecond level(1 μas) relative astrometry precision to meet the requirements for detection of Earth-like planets.The CHES satellite operates at the Sun-Earth L2 point and observes all the target stars for 5 yr.CHES will offer the first direct measurements of true masses and inclinations of Earth Twins and super-Earths orbiting our neighbor stars based on microarcsecond astrometry from space.This will definitely enhance our understanding of the formation of diverse nearby planetary systems and the emergence of other worlds for solar-type stars,and finally provide insights to the evolution of our own solar system.展开更多
The astrometry method has great advantages in searching for exoplanets in the habitable zone around solar-like stars. However, the presence of multiple planets may cause a problem with degeneracy when trying to comput...The astrometry method has great advantages in searching for exoplanets in the habitable zone around solar-like stars. However, the presence of multiple planets may cause a problem with degeneracy when trying to compute accurate planet parameters from observation data and reduce detectability. The degeneracy problem is extremely critical, especially in a space mission which has limited observation time and cadence. In this series of papers, we study the detectability of habitable Earth-mass planets in different types of multi-planet systems, aiming to find the most favorable targets for the potential space mission–Habitable ExoPlanet Survey(HEPS). In the first paper, we present an algorithm to find planets in the habitable zone around solar-like stars using astrometry. We find the detectability can be well described by planets' signal-to-noise ratio(SNR) and a defined parameter S = M2/(T1-T2)2, where M2 and T2are the mass and period of the second planet, respectively. T1 is the period of the planet in the habitable zone. The parameter S represents the influence of planetary architectures. We fit the detectability as a function of both the SNR of the planet in the habitable zone and the parameter S. An Earth-like planet in a habitable zone is harder to detect(with detectability PHP< 80%) in a system with a hot Jupiter or warm Jupiter(within2 AU), in which the parameter S is large. These results can be used in target selections and to determine the priority of target stars for HEPS, especially when we select and rank nearby planet hosts with a single planet.展开更多
The Standards of Fundamental Astronomy(SOFA)is a service provided by the International Astronomical Union that offers algorithms and software for astronomical calculations,which was released in two versions for FORTRA...The Standards of Fundamental Astronomy(SOFA)is a service provided by the International Astronomical Union that offers algorithms and software for astronomical calculations,which was released in two versions for FORTRAN77 and ANSI C,respectively.In this work,we implement the Python package PyMsOfa for SOFA service by three ways:(1)a Python wrapper package based on a foreign function library for Python(ctypes),(2)a Python wrapper package with the foreign function interface for Python calling C code(cffi)and(3)a Python package directly written in pure Python codes from SOFA subroutines.The package PyMsOfa has fully implemented 247 functions of the original SOFA routines released on 2023 October 11.In addition,PyMsOfa is also extensively examined,which is exactly consistent with those test examples given by the original SOFA.This Python package can be suitable to not only the astrometric detection of habitable planets from the Closeby Habitable Exoplanet Survey mission,but also for the frontier themes of black holes and dark matter related to astrometric calculations and other fields.The source codes are available via http://pypi.org/project/PyMsOfa/and https://github.com/CHES2023/PyMsOfa.展开更多
Exactly 101 years ago, German scientist—Alfred Lothar Wegener, sailed against the prevailing wisdom of his day when he posited that not only have the Earth’s continental plates receded from each other over the cours...Exactly 101 years ago, German scientist—Alfred Lothar Wegener, sailed against the prevailing wisdom of his day when he posited that not only have the Earth’s continental plates receded from each other over the course of the Earth’s history, but that they are currently in a state of motion relative to one another. To explain this, Wegener set forth the hypothesis that the Earth must be expanding as a whole. Wegener’s inability to provide an adequate explanation of the forces and energy source responsible for continental drift and the prevailing belief that the Earth was a rigid solid body resulted in the acrimonious dismissal of his theories. Today, that the continents are receding from each other is no longer a point of debate but a sacrosanct pillar of modern geology and geophysics. What is debatable is the energy source driving this phenomenon. An expanding Earth hypothesis is currently an idea that is not accepted on a general consensus level. Antiproponent of the expanding Earth mercilessly dismiss it as a pseudo or fringe science with their main point of rejection being the energy source to power this supposed expansion. Be that asit may, we show herein that from the well accepted law of conversation of spin angular momentum, Stephenson [1]’s result that over the last 2700 years or so, the length of the Earth’s day has undergone a change of about +17.00 μs/yr, this result invariably leads to the plausibility the Earth may very be expanding radially at a paltry rate of about +0.60 mm/yr. If correct, this simple fact, automatically move the expanding Earth hypothesis from the realm of pseudo or fringe science, to that of plausible science.展开更多
Searching for exoplanets with different methods has always been the focus of astronomers over the past few years.Among multiple planet detection techniques,astrometry stands out for its capability to accurately determ...Searching for exoplanets with different methods has always been the focus of astronomers over the past few years.Among multiple planet detection techniques,astrometry stands out for its capability to accurately determine the orbital parameters of exoplanets.In this study,we examine the likelihood of extraterrestrial intelligent civilizations detecting planets in our solar system using the astrometry method.By conducting injection-recovery simulations,we investigate the detectability of the four giant planets in our solar system under different observing baselines and observational errors.Our findings indicate that extraterrestrial intelligence could detect and characterize all four giant planets,provided they are observed for a minimum of 90 yr with signal-noise ratios exceeding 1.For individual planets such as Jupiter,Saturn,and Neptune,a baseline that surpasses half of their orbital periods is necessary for detection.However,Uranus requires longer observing baselines since its orbital period is roughly half of that of Neptune.If the astrometry precision is equal to or better than 10μas,all 8707 stars located within30 pc of our solar system possess the potential to detect the four giant planets within 100 yr.Additionally,our prediction suggests that over 300 stars positioned within 10 pc from our solar system could detect our Earth if they achieve an astrometry precision of 0.3μas.展开更多
HEPS(Habitable ExoPlanet Survey) is a planning astrometry satellite that aims to find Earth-like planets in the solar neighbourhood. In this paper, we selected 140 planet harboring stars within 30 pc of the solar syst...HEPS(Habitable ExoPlanet Survey) is a planning astrometry satellite that aims to find Earth-like planets in the solar neighbourhood. In this paper, we selected 140 planet harboring stars within 30 pc of the solar system to be potential targets for HEPS. We calculate the detection probability of the planet in habitable zone(HZ) for each system using the simulated data of astrometry measurements. For those host stars without planets in HZ, we inject an additional planet of 10 M⊕ in their HZs and check the stability of the systems. Considering five observation modes of different sampling cadence and total observation time, we obtain a table containing the total detection probability of the planets in HZs for all of the 140 selected systems. This paper provides a potential ranked list of target stars for HEPS, or other astrometric mission to detect Earth-like planets in the future. We also calculate an empirical fitted expression of the detection probability as a function of both sampling cadence and total observation time. We conclude a quantitative method to estimate the detection probability for certain planet hosts and observation modes via the empirical expression. We show the minimum requirements of both sampling cadence and observation time for Proxima Centauri, HD 189733 and HD 102365, if the detection probability of habitable-zone planets of these three systems needs to be 90%.展开更多
Exactly 101 years ago, German scientist Alfred Lothar Wegener, sailed against the prevailing wisdom of his day when he posited that not only have the Earth’s continental plates receded from each other over the course...Exactly 101 years ago, German scientist Alfred Lothar Wegener, sailed against the prevailing wisdom of his day when he posited that not only have the Earth’s continental plates receded from each other over the course of the Earth’s history, but that they are currently in a state of motion relative to one another. To explain this, Wegener set forth the hypothesis that the Earth must be expanding as a whole. Wegener’s inability to provide an adequate explanation of the forces and energy source responsible for continental drift and the prevailing belief that the Earth was a rigid solid body resulted in the acrimonious dismissal of his theories. Today, that the continents are generally receding from each other is no longer a point of debate but a sacrosanct pillar of modern geology and geophysics. What is debatable is the energy source driving this phenomenon. Herein, we hold that continental drift is a result of the Earth undergoing a secular radial expansion. An expanding Earth hypothesis is currently an idea that is not accepted on a general consensus level. Be thatas it may, we show herein that the law of conservation of angular momentum and energy entail that the Earth must not only expand as a consequence of the secular recession of the Earth-Moon system from the Sun, but invariably, that the Moon must contract as well. As a result, the much sort for energy source driving plate tectonics can (hypothetically) be identified with the energy transfers occurring between the orbital and rotational kinetic energy of the Earth. If our calculations are to be believed—as we do;then, the Earth must be expanding radially at a paltry rate of about +1.50 mm/yr while the Moon is contracting radially at a relatively high rate of about -410 mm/yr.展开更多
The geometric distortion of a CCD field of view has a direct influence on the positional measurements of CCD observations. In order to obtain high precision astrometric results, the geometric distortion should be deri...The geometric distortion of a CCD field of view has a direct influence on the positional measurements of CCD observations. In order to obtain high precision astrometric results, the geometric distortion should be derived and corrected precisely. As presented in our previous work, a convenient solution has been carried out and has also been applied to observations of Phoebe. In order to fur- ther improve the solution, an orthogonal method based on Zernike polynomials is used in this work. Four nights of CCD observations including Himalia, the sixth satellite of Jupiter, and open clusters (NGC 1664 or NGC 2324) on each night have been processed as an application. The observations were obtained from the 2.4 m telescope administered by Yunnan Observatories. The catalog UCAC4 was used to match reference stars in all of the CCD frames. The ephemeris of Himalia is retrieved from the Institut de M6canique C61este et de Calcul des Ephemerides (IMCCE). Our results show that the means of observed minus calculated (O - C) positional residuals are -0.034 and -0.026 arcsec in right ascension and declination, respectively. The corresponding standard deviations are 0.031" and 0.028". The measurement dispersion is significantly improved compared to that by using our previous solution.展开更多
In order to study the potential associated with high precision CCD astrometry of irregular satel- lites, we have acquired experimental observations of Himalia, the sixth and irregular satellite of Jupiter. A total of ...In order to study the potential associated with high precision CCD astrometry of irregular satel- lites, we have acquired experimental observations of Himalia, the sixth and irregular satellite of Jupiter. A total of 185 CCD observations were obtained by using the 2.4m and 1 m telescopes administered by Yunnan Observatories over ten nights. Preliminary analysis of the observations were made, including geo- metric distortion, atmospheric refraction, and also the phase effect. All positions of Himalia are measured relative to the reference stars from the catalog UCAC4 in each CCD field of view. The theoretical positions of Himalia were retrieved from the Institute de M6chanique C61este et de Calcul des t^ph6m6rides, while the positions of Jupiter were obtained based on the planetary ephemeris INPOP13c. The results show that the means of observed minus computed (O - C) residuals are -0.004" and -0.002" in right ascension and declination, respectively. The standard deviations of (O - C) residuals are estimated to be about 0.04" in each direction.展开更多
Motivated by the desire to understand the rich dynamics of precessionally driven flow in a liquid planetary core, we investigate, through numerical simulations, the precessing fluid motion in a ro- taring cylindrical ...Motivated by the desire to understand the rich dynamics of precessionally driven flow in a liquid planetary core, we investigate, through numerical simulations, the precessing fluid motion in a ro- taring cylindrical annulus, which simultaneously possesses slow precession. The same problem has been studied extensively in cylinders, where the precessing flow is characterized by three key parameters: the Ekman number E, the Poincar6 number Po and the radius-height aspect ratio F. While in an annulus, there is another parameter, the inner-radius-height aspect ratio T, which also plays an important role in controlling the structure and evolution of the flow. By decomposing the nonlinear solution into a set of inertial modes, we demonstrate the properties of both weakly and moderately precessing flows. It is found that, when the precessional force is weak, the flow is stable with a constant amplitude of kinetic energy. As the precessional force increases, our simulation suggests that the nonlinear interaction be- tween the boundary effects and the inertial modes can trigger more turbulence, introducing a transitional regime of rich dynamics to disordered flow. The inertial mode u111, followed by u113 or u112, always dominates the precessing flow when 0.001 ≤Po ≤ 0.05, ranging from weak to moderate precession. Moreover, the precessing flow in an annulus shows more stability than in a cylinder which is likely to be caused by the effect of the inner boundary that restricts the growth of resonant and non-resonant inertial modes. Furthermore, the mechanism of triadic resonance is not found in the transitional regime from a laminar to disordered flow.展开更多
系外类地行星空间探测计划(Search for Terrestrial Exo-Planets,以下简称"STEP")采用天体测量法和微像素级焦平面定标测量技术,设计望远镜焦平面检测精度达到1μas.在假定焦平面设计能达到检测精度的前提条件下,系统分析了...系外类地行星空间探测计划(Search for Terrestrial Exo-Planets,以下简称"STEP")采用天体测量法和微像素级焦平面定标测量技术,设计望远镜焦平面检测精度达到1μas.在假定焦平面设计能达到检测精度的前提条件下,系统分析了恒星自行、视差、卫星速度和位置、光学系统的光心等关键因素对检测系外行星的影响.有别于传统的窄视场照相底片常数法,提出了一种恒星相对角距测量方法,以检测由于可能存在的系外行星而引起星对角距变化的非线性项,消除了传统窄视场天体测量中参考星位置和自行精度对检测系外行星的直接影响.针对同一天区内的8颗参考星和1颗具有行星系统的待测星,分别模拟出5 yr内的观测数据,利用最小二乘法进行处理,发现基于STEP自身1μas的观测精度,在这种情况下是可以观测到类地行星的.展开更多
基金Supported by the National Natural Science Foundation of China.
文摘We describe and analyze observations of mutual events of Galilean satellites made at the Yunnan Observatory in February 2003 from CCD imaging for the first time in China. Astrometric positions were deduced from these photometric observations by modelling the relative motion and the photometry of the involved satellites during each event.
基金Supported by the National Natural Science Foundation of China.
文摘The relationship between the k<SUB>2</SUB>/Q of the Galilean satellites and the k<SUB>2J</SUB>/Q<SUB>J</SUB> of Jupiter is derived from energy and momentum considerations. Calculations suggest that the Galilean satellites can be divided into two classes according to their Q values: Io and Ganymede have values between 10 and 50, while Europa and Callisto have values ranging from 200 to 700. The tidal contributions of the Galilean satellites to Jupiter's rotation are estimated. The main deceleration of Jupiter, which is about 99.04% of the total, comes from Io.
基金financially supported by the Strategic Priority Research Program on Space Science of the Chinese Academy of Sciences (Grant No. XDA 15020800)the National Natural Science Foundation of China (Grant Nos. 12033010, 41604152 and U1938111)Foundation of Minor Planets of the Purple Mountain Observatory and Youth Innovation Promotion Association CAS (Grant No. 2018178)。
文摘The Closeby Habitable Exoplanet Survey(CHES) mission is proposed to discover habitable-zone Earth-like planets of nearby solar-type stars(~10 pc away from our solar system) via microarcsecond relative astrometry.The major scientific objectives of CHES are:to search for Earth Twins or terrestrial planets in habitable zones orbiting100 FGK nearby stars;further to conduct a comprehensive survey and extensively characterize nearby planetary systems.The primary payload is a high-quality,low-distortion,high-stability telescope.The optical subsystem is a coaxial three-mirror anastigmat(TMA) with a 1.2 m-aperture,0°.44 × 0°.44 field of view and 500 nm-900 nm working wave band.The camera focal plane is composed of a mosaic of 81 scientific CMOS detectors each with4 k × 4 k pixels.The heterodyne laser interferometric calibration technology is employed to ensure microarcsecond level(1 μas) relative astrometry precision to meet the requirements for detection of Earth-like planets.The CHES satellite operates at the Sun-Earth L2 point and observes all the target stars for 5 yr.CHES will offer the first direct measurements of true masses and inclinations of Earth Twins and super-Earths orbiting our neighbor stars based on microarcsecond astrometry from space.This will definitely enhance our understanding of the formation of diverse nearby planetary systems and the emergence of other worlds for solar-type stars,and finally provide insights to the evolution of our own solar system.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11503009, 11333002 and 11673011)the Heising-Simons Foundation+1 种基金the Fundamental Research Funds for the Central Universities (Nos. 14380018 and 14380023)the Technology of Space Telescope Detecting Exoplanet and Life supported by the National Defense Science and Engineering Bureau civil spaceflight advanced research project D030201
文摘The astrometry method has great advantages in searching for exoplanets in the habitable zone around solar-like stars. However, the presence of multiple planets may cause a problem with degeneracy when trying to compute accurate planet parameters from observation data and reduce detectability. The degeneracy problem is extremely critical, especially in a space mission which has limited observation time and cadence. In this series of papers, we study the detectability of habitable Earth-mass planets in different types of multi-planet systems, aiming to find the most favorable targets for the potential space mission–Habitable ExoPlanet Survey(HEPS). In the first paper, we present an algorithm to find planets in the habitable zone around solar-like stars using astrometry. We find the detectability can be well described by planets' signal-to-noise ratio(SNR) and a defined parameter S = M2/(T1-T2)2, where M2 and T2are the mass and period of the second planet, respectively. T1 is the period of the planet in the habitable zone. The parameter S represents the influence of planetary architectures. We fit the detectability as a function of both the SNR of the planet in the habitable zone and the parameter S. An Earth-like planet in a habitable zone is harder to detect(with detectability PHP< 80%) in a system with a hot Jupiter or warm Jupiter(within2 AU), in which the parameter S is large. These results can be used in target selections and to determine the priority of target stars for HEPS, especially when we select and rank nearby planet hosts with a single planet.
基金financially supported by the National Natural Science Foundation of China(NSFC,Grant Nos.12033010,11773081,12111530175)the Strategic Priority Research Program on Space Science of the Chinese Academy of Sciences(grant No.XDA 15020800)the Foundation of Minor Planets of the Purple Mountain Observatory。
文摘The Standards of Fundamental Astronomy(SOFA)is a service provided by the International Astronomical Union that offers algorithms and software for astronomical calculations,which was released in two versions for FORTRAN77 and ANSI C,respectively.In this work,we implement the Python package PyMsOfa for SOFA service by three ways:(1)a Python wrapper package based on a foreign function library for Python(ctypes),(2)a Python wrapper package with the foreign function interface for Python calling C code(cffi)and(3)a Python package directly written in pure Python codes from SOFA subroutines.The package PyMsOfa has fully implemented 247 functions of the original SOFA routines released on 2023 October 11.In addition,PyMsOfa is also extensively examined,which is exactly consistent with those test examples given by the original SOFA.This Python package can be suitable to not only the astrometric detection of habitable planets from the Closeby Habitable Exoplanet Survey mission,but also for the frontier themes of black holes and dark matter related to astrometric calculations and other fields.The source codes are available via http://pypi.org/project/PyMsOfa/and https://github.com/CHES2023/PyMsOfa.
文摘Exactly 101 years ago, German scientist—Alfred Lothar Wegener, sailed against the prevailing wisdom of his day when he posited that not only have the Earth’s continental plates receded from each other over the course of the Earth’s history, but that they are currently in a state of motion relative to one another. To explain this, Wegener set forth the hypothesis that the Earth must be expanding as a whole. Wegener’s inability to provide an adequate explanation of the forces and energy source responsible for continental drift and the prevailing belief that the Earth was a rigid solid body resulted in the acrimonious dismissal of his theories. Today, that the continents are receding from each other is no longer a point of debate but a sacrosanct pillar of modern geology and geophysics. What is debatable is the energy source driving this phenomenon. An expanding Earth hypothesis is currently an idea that is not accepted on a general consensus level. Antiproponent of the expanding Earth mercilessly dismiss it as a pseudo or fringe science with their main point of rejection being the energy source to power this supposed expansion. Be that asit may, we show herein that from the well accepted law of conversation of spin angular momentum, Stephenson [1]’s result that over the last 2700 years or so, the length of the Earth’s day has undergone a change of about +17.00 μs/yr, this result invariably leads to the plausibility the Earth may very be expanding radially at a paltry rate of about +0.60 mm/yr. If correct, this simple fact, automatically move the expanding Earth hypothesis from the realm of pseudo or fringe science, to that of plausible science.
基金supported by the National Natural Science Foundation of China(NSFC)(grant No.12103003)the Doctoral research start-up funding of Anhui Normal University。
文摘Searching for exoplanets with different methods has always been the focus of astronomers over the past few years.Among multiple planet detection techniques,astrometry stands out for its capability to accurately determine the orbital parameters of exoplanets.In this study,we examine the likelihood of extraterrestrial intelligent civilizations detecting planets in our solar system using the astrometry method.By conducting injection-recovery simulations,we investigate the detectability of the four giant planets in our solar system under different observing baselines and observational errors.Our findings indicate that extraterrestrial intelligence could detect and characterize all four giant planets,provided they are observed for a minimum of 90 yr with signal-noise ratios exceeding 1.For individual planets such as Jupiter,Saturn,and Neptune,a baseline that surpasses half of their orbital periods is necessary for detection.However,Uranus requires longer observing baselines since its orbital period is roughly half of that of Neptune.If the astrometry precision is equal to or better than 10μas,all 8707 stars located within30 pc of our solar system possess the potential to detect the four giant planets within 100 yr.Additionally,our prediction suggests that over 300 stars positioned within 10 pc from our solar system could detect our Earth if they achieve an astrometry precision of 0.3μas.
基金supported by the National Natural Science Foundation of China(Grant Nos.11503009,11973028,11933001,11673011 and11803012)supported by the National Defense Science and Engineering Bureau civil spaceflight advanced research project D030201support of Program A for Outstanding PhD candidates of Nanjing University.
文摘HEPS(Habitable ExoPlanet Survey) is a planning astrometry satellite that aims to find Earth-like planets in the solar neighbourhood. In this paper, we selected 140 planet harboring stars within 30 pc of the solar system to be potential targets for HEPS. We calculate the detection probability of the planet in habitable zone(HZ) for each system using the simulated data of astrometry measurements. For those host stars without planets in HZ, we inject an additional planet of 10 M⊕ in their HZs and check the stability of the systems. Considering five observation modes of different sampling cadence and total observation time, we obtain a table containing the total detection probability of the planets in HZs for all of the 140 selected systems. This paper provides a potential ranked list of target stars for HEPS, or other astrometric mission to detect Earth-like planets in the future. We also calculate an empirical fitted expression of the detection probability as a function of both sampling cadence and total observation time. We conclude a quantitative method to estimate the detection probability for certain planet hosts and observation modes via the empirical expression. We show the minimum requirements of both sampling cadence and observation time for Proxima Centauri, HD 189733 and HD 102365, if the detection probability of habitable-zone planets of these three systems needs to be 90%.
文摘Exactly 101 years ago, German scientist Alfred Lothar Wegener, sailed against the prevailing wisdom of his day when he posited that not only have the Earth’s continental plates receded from each other over the course of the Earth’s history, but that they are currently in a state of motion relative to one another. To explain this, Wegener set forth the hypothesis that the Earth must be expanding as a whole. Wegener’s inability to provide an adequate explanation of the forces and energy source responsible for continental drift and the prevailing belief that the Earth was a rigid solid body resulted in the acrimonious dismissal of his theories. Today, that the continents are generally receding from each other is no longer a point of debate but a sacrosanct pillar of modern geology and geophysics. What is debatable is the energy source driving this phenomenon. Herein, we hold that continental drift is a result of the Earth undergoing a secular radial expansion. An expanding Earth hypothesis is currently an idea that is not accepted on a general consensus level. Be thatas it may, we show herein that the law of conservation of angular momentum and energy entail that the Earth must not only expand as a consequence of the secular recession of the Earth-Moon system from the Sun, but invariably, that the Moon must contract as well. As a result, the much sort for energy source driving plate tectonics can (hypothetically) be identified with the energy transfers occurring between the orbital and rotational kinetic energy of the Earth. If our calculations are to be believed—as we do;then, the Earth must be expanding radially at a paltry rate of about +1.50 mm/yr while the Moon is contracting radially at a relatively high rate of about -410 mm/yr.
基金support from the staff at the Lijiang 2.4 m telescopeFunding for the telescope has been provided by CAS and the People’s Government of Yunnan Provincefinancially supported by the National Natural Science Foundation of China(Grant Nos.U1431227 and11273014)
文摘The geometric distortion of a CCD field of view has a direct influence on the positional measurements of CCD observations. In order to obtain high precision astrometric results, the geometric distortion should be derived and corrected precisely. As presented in our previous work, a convenient solution has been carried out and has also been applied to observations of Phoebe. In order to fur- ther improve the solution, an orthogonal method based on Zernike polynomials is used in this work. Four nights of CCD observations including Himalia, the sixth satellite of Jupiter, and open clusters (NGC 1664 or NGC 2324) on each night have been processed as an application. The observations were obtained from the 2.4 m telescope administered by Yunnan Observatories. The catalog UCAC4 was used to match reference stars in all of the CCD frames. The ephemeris of Himalia is retrieved from the Institut de M6canique C61este et de Calcul des Ephemerides (IMCCE). Our results show that the means of observed minus calculated (O - C) positional residuals are -0.034 and -0.026 arcsec in right ascension and declination, respectively. The corresponding standard deviations are 0.031" and 0.028". The measurement dispersion is significantly improved compared to that by using our previous solution.
基金provided by CASthe People’s Government of Yunnan Provincefinancially supported by the National Natural Science Foundation of China(Grant Nos.U1431227 and 11273014)
文摘In order to study the potential associated with high precision CCD astrometry of irregular satel- lites, we have acquired experimental observations of Himalia, the sixth and irregular satellite of Jupiter. A total of 185 CCD observations were obtained by using the 2.4m and 1 m telescopes administered by Yunnan Observatories over ten nights. Preliminary analysis of the observations were made, including geo- metric distortion, atmospheric refraction, and also the phase effect. All positions of Himalia are measured relative to the reference stars from the catalog UCAC4 in each CCD field of view. The theoretical positions of Himalia were retrieved from the Institute de M6chanique C61este et de Calcul des t^ph6m6rides, while the positions of Jupiter were obtained based on the planetary ephemeris INPOP13c. The results show that the means of observed minus computed (O - C) residuals are -0.004" and -0.002" in right ascension and declination, respectively. The standard deviations of (O - C) residuals are estimated to be about 0.04" in each direction.
基金supported by the National Natural Science Foundation of China(Grant Nos.11673052 and 41661164034)the Pilot Project of the Chinese Academy of Sciences(No.XDB18010203)
文摘Motivated by the desire to understand the rich dynamics of precessionally driven flow in a liquid planetary core, we investigate, through numerical simulations, the precessing fluid motion in a ro- taring cylindrical annulus, which simultaneously possesses slow precession. The same problem has been studied extensively in cylinders, where the precessing flow is characterized by three key parameters: the Ekman number E, the Poincar6 number Po and the radius-height aspect ratio F. While in an annulus, there is another parameter, the inner-radius-height aspect ratio T, which also plays an important role in controlling the structure and evolution of the flow. By decomposing the nonlinear solution into a set of inertial modes, we demonstrate the properties of both weakly and moderately precessing flows. It is found that, when the precessional force is weak, the flow is stable with a constant amplitude of kinetic energy. As the precessional force increases, our simulation suggests that the nonlinear interaction be- tween the boundary effects and the inertial modes can trigger more turbulence, introducing a transitional regime of rich dynamics to disordered flow. The inertial mode u111, followed by u113 or u112, always dominates the precessing flow when 0.001 ≤Po ≤ 0.05, ranging from weak to moderate precession. Moreover, the precessing flow in an annulus shows more stability than in a cylinder which is likely to be caused by the effect of the inner boundary that restricts the growth of resonant and non-resonant inertial modes. Furthermore, the mechanism of triadic resonance is not found in the transitional regime from a laminar to disordered flow.
文摘系外类地行星空间探测计划(Search for Terrestrial Exo-Planets,以下简称"STEP")采用天体测量法和微像素级焦平面定标测量技术,设计望远镜焦平面检测精度达到1μas.在假定焦平面设计能达到检测精度的前提条件下,系统分析了恒星自行、视差、卫星速度和位置、光学系统的光心等关键因素对检测系外行星的影响.有别于传统的窄视场照相底片常数法,提出了一种恒星相对角距测量方法,以检测由于可能存在的系外行星而引起星对角距变化的非线性项,消除了传统窄视场天体测量中参考星位置和自行精度对检测系外行星的直接影响.针对同一天区内的8颗参考星和1颗具有行星系统的待测星,分别模拟出5 yr内的观测数据,利用最小二乘法进行处理,发现基于STEP自身1μas的观测精度,在这种情况下是可以观测到类地行星的.