期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Micro-arcsecond Celestial Reference Frames:definition and realization——Impact of the recent IAU Resolutions 被引量:1
1
作者 Nicole Capitaine 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2012年第8期1162-1184,共23页
The adoption of the International Celestial Reference System (ICRS), based on Very Long Baseline Interferometry (VLBI) observations of extragalactic radiosources by the International Astronomical Union (IAU) sin... The adoption of the International Celestial Reference System (ICRS), based on Very Long Baseline Interferometry (VLBI) observations of extragalactic radiosources by the International Astronomical Union (IAU) since 1998 January 1, opened a new era for astronomy. The ICRS and the corresponding frame, the International Celestial Reference Frame (ICRF), replaced the Fundamental Catalog (FK5) based on positions and proper motions of bright stars, with the Hipparcos cat- alog being adopted as the primary realization of the ICRS in optical wavelengths. According to its definition, the ICRS is such that the barycentric directions of distant extragalactic objects show no global rotation with respect to these objects; this pro- vides a quasi-inertial reference for measuring the positions and angular motions of the celestial objects. Other resolutions on reference systems were passed by the IAU in 2000 and 2006 and endorsed by the International Union of Geodesy and Geophysics (IUGG) in 2003 and 2007, respectively. These especially concern the definition and re- alization of the astronomical reference systems in the framework of general relativity and transformations between them. First, the IAU 2000 resolutions refined the con- cepts and definition of the astronomical reference systems and parameters for Earth's rotation, and adopted the IAU 2000 precession-nutation. Then, the IAU 2006 resolutions adopted a new precession model that is consistent with dynamical theories; they also addressed definition, terminology or orientation issues relative to reference systems and time scales that needed to be specified after the adoption of the IAU 2000 resolutions. An additional IUGG 2007 resolution defined the International Terrestrial Reference System (ITRS) so that it strictly complies with the IAU recommendations. Finally, the IAU 2009 resolutions adopted a new system of astronomical constants and an improved realization of the ICRF. These fundamental changes have led to significant improvements in the fields of astrometry, celestial mechanics, geodynam- ics, geodesy, etc. Of special interest are the improvements in the model for variations in Earth's rotation, which, in turn, can provide better knowledge of the dynamics of the Earth's interior. These have also contributed to a significant improvement in the accuracy of the ephemerides of the solar system bodies as determined from modern measurements, with a large number of scientific applications. This paper recalls the main aspects of the recent IAU resolutions on reference systems as well as their con- sequences on the concepts, definitions, nomenclature and models that are suitable for the definition, realization and transformation of reference frames at a microarcsecond level. 展开更多
关键词 astrometry and celestial mechanics astrometry -- reference systems --Earth -- techniques: interferometric
下载PDF
CHES: A Space-borne Astrometric Mission for the Detection of Habitable Planets of the Nearby Solar-type Stars 被引量:7
2
作者 Jiang-Hui Ji Hai-Tao Li +18 位作者 Jun-Bo Zhang Liang Fang Dong Li Su Wang Yang Cao Lei Deng Bao-Quan Li Hao Xian Xiao-Dong Gao Ang Zhang Fei Li Jia-Cheng Liu Zhao-Xiang Qi Sheng Jin Ya-Ning Liu Guo Chen Ming-Tao Li Yao Dong Zi Zhu 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2022年第7期32-59,共28页
The Closeby Habitable Exoplanet Survey(CHES) mission is proposed to discover habitable-zone Earth-like planets of nearby solar-type stars(~10 pc away from our solar system) via microarcsecond relative astrometry.The m... The Closeby Habitable Exoplanet Survey(CHES) mission is proposed to discover habitable-zone Earth-like planets of nearby solar-type stars(~10 pc away from our solar system) via microarcsecond relative astrometry.The major scientific objectives of CHES are:to search for Earth Twins or terrestrial planets in habitable zones orbiting100 FGK nearby stars;further to conduct a comprehensive survey and extensively characterize nearby planetary systems.The primary payload is a high-quality,low-distortion,high-stability telescope.The optical subsystem is a coaxial three-mirror anastigmat(TMA) with a 1.2 m-aperture,0°.44 × 0°.44 field of view and 500 nm-900 nm working wave band.The camera focal plane is composed of a mosaic of 81 scientific CMOS detectors each with4 k × 4 k pixels.The heterodyne laser interferometric calibration technology is employed to ensure microarcsecond level(1 μas) relative astrometry precision to meet the requirements for detection of Earth-like planets.The CHES satellite operates at the Sun-Earth L2 point and observes all the target stars for 5 yr.CHES will offer the first direct measurements of true masses and inclinations of Earth Twins and super-Earths orbiting our neighbor stars based on microarcsecond astrometry from space.This will definitely enhance our understanding of the formation of diverse nearby planetary systems and the emergence of other worlds for solar-type stars,and finally provide insights to the evolution of our own solar system. 展开更多
关键词 astrometry and celestial mechanics planets and satellites:detection planets and satellites:terrestrial planets stars:solar-type
下载PDF
Variable stars in M37 被引量:1
3
作者 Ajaz Ahmad Dar Padmakar Singh Parihar +1 位作者 Parvej Saleh Manzoor Ahmad Malik 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2018年第12期111-122,共12页
The CCD photometric observations of open star cluster M37(NGC 2099) were carried out up to a limiting magnitude of V ~ 20 in both B and V filters to search for variable stars using a 2k×4k CCD and the 1.3 m tele... The CCD photometric observations of open star cluster M37(NGC 2099) were carried out up to a limiting magnitude of V ~ 20 in both B and V filters to search for variable stars using a 2k×4k CCD and the 1.3 m telescope at the Vainu Bapu Observatory, Kavalur.A total of 314 stars were in the first observing run, out of which 60 were identified as variables.Eight out of the identified 60 variables are classified as W UMa binary stars.For model fitting, we used PHOEBE based on the W-D code to estimate the physical parameters of these newly detected W UMa binaries that theoretically best match the observed light curves. 展开更多
关键词 techniques:photometric astronomical instrumentation methods and techniques astrometry and celestial mechanics (stars:) binaries:eclipsing
下载PDF
The principle of a navigation constellation composed of SIGSO communication satellites 被引量:1
4
作者 Hai-Fu Ji Li-Hua Ma +1 位作者 Guo-Xiang Ai Hu-Li Shi 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2013年第4期479-489,共11页
The Chinese Area Positioning System (CAPS), a navigation system based on geostafionary orbit (GEO) communication satellites, was developed in 2002 by astronomers at Chinese Academy of Sciences. Extensive positioni... The Chinese Area Positioning System (CAPS), a navigation system based on geostafionary orbit (GEO) communication satellites, was developed in 2002 by astronomers at Chinese Academy of Sciences. Extensive positioning experiments of CAPS have been performed since 2005. On the basis of CAPS, this paper studies the principle of a navigation constellation composed of slightly inclined geostationary orbit (SIGSO) communication satellites. SIGSO satellites are derived from GEO satellites which are near the end of their operational life by inclined orbit operation. Considering the abundant frequency resources of SIGSO satellites, multi-frequency observations could be conducted to enhance the precision of pseudorange measurements and ameliorate the positioning performance. A constellation composed of two GEO satellites and four SIGSO satellites with an inclination of 5° can provide service to most of the territory of China with a maximum position dilution of precision (PDOP) over 24 h of less than 42. With synthetic utilization of the truncated precise code and a physical augmentation factor in four frequencies, the navigation system with this constellation is expected to obtain comparable positioning performance to that of the coarse acquisition code of the Global Positioning System (GPS). When the new method of code-carrier phase combinations is adopted, the system has the potential to possess commensurate accuracy with the precise code in GPS. Additionally, the copious frequency resources can also be used to develop new anti-interference techniques and integrate navigation and communication. 展开更多
关键词 astrometry and celestial mechanics - astronomy application-artificial satellite - satellite navigation constellation
下载PDF
Precession effects on a liquid planetary core
5
作者 Min Liu Li-Gang Li 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2018年第2期115-124,共10页
Motivated by the desire to understand the rich dynamics of precessionally driven flow in a liquid planetary core, we investigate, through numerical simulations, the precessing fluid motion in a ro- taring cylindrical ... Motivated by the desire to understand the rich dynamics of precessionally driven flow in a liquid planetary core, we investigate, through numerical simulations, the precessing fluid motion in a ro- taring cylindrical annulus, which simultaneously possesses slow precession. The same problem has been studied extensively in cylinders, where the precessing flow is characterized by three key parameters: the Ekman number E, the Poincar6 number Po and the radius-height aspect ratio F. While in an annulus, there is another parameter, the inner-radius-height aspect ratio T, which also plays an important role in controlling the structure and evolution of the flow. By decomposing the nonlinear solution into a set of inertial modes, we demonstrate the properties of both weakly and moderately precessing flows. It is found that, when the precessional force is weak, the flow is stable with a constant amplitude of kinetic energy. As the precessional force increases, our simulation suggests that the nonlinear interaction be- tween the boundary effects and the inertial modes can trigger more turbulence, introducing a transitional regime of rich dynamics to disordered flow. The inertial mode u111, followed by u113 or u112, always dominates the precessing flow when 0.001 ≤Po ≤ 0.05, ranging from weak to moderate precession. Moreover, the precessing flow in an annulus shows more stability than in a cylinder which is likely to be caused by the effect of the inner boundary that restricts the growth of resonant and non-resonant inertial modes. Furthermore, the mechanism of triadic resonance is not found in the transitional regime from a laminar to disordered flow. 展开更多
关键词 astrometry and celestial mechanics terrestrial planets -- planets and satellites: interiors-- planets and satellites: instabilities: waves
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部