Few visitors to Beijing would think the area around Beijing Railway Station a nice place to linger after seeing the station flooded with crowds of passengers.Yet a brick build- ing nearby,one of world’s oldest observ...Few visitors to Beijing would think the area around Beijing Railway Station a nice place to linger after seeing the station flooded with crowds of passengers.Yet a brick build- ing nearby,one of world’s oldest observatories,is well worth a tour. With its well-preserved architecture and equipment the Ancient Observatory is known internationally and has been visited by heads of state,government officials and renowned scientists and astronomers from around the world.展开更多
Since the beginning of the 21st century,major earthquakes have frequently occurred worldwide.To explore the impact of astronomical factors on earthquakes,in this study,the statistical analysis method of correlation is...Since the beginning of the 21st century,major earthquakes have frequently occurred worldwide.To explore the impact of astronomical factors on earthquakes,in this study,the statistical analysis method of correlation is used to systematically analyze the effects of astronomical factors,such as solar activity,Earth’s rotation,lunar declination angle,celestial tidal force,and other phenomena on M≥8 global earthquakes at the beginning of the 21st century.With regard to solar activity,this study focuses on the analysis of the 11-year and century cycles of solar activity.The causal relationship of the Earth’s rotation is not obvious in this work and previous works;in contrast,the valley period of the solar activity century cycle may be an important astronomical factor leading to the frequent occurrence of global earthquakes at the beginning of the 21st century.This topic warrants further study.展开更多
Artificial Intelligence(AI)is an interdisciplinary research field with widespread applications.It aims at developing theoretical,methodological,technological,and applied systems that simulate,enhance,and assist human ...Artificial Intelligence(AI)is an interdisciplinary research field with widespread applications.It aims at developing theoretical,methodological,technological,and applied systems that simulate,enhance,and assist human intelligence.Recently,notable accomplishments of artificial intelligence technology have been achieved in astronomical data processing,establishing this technology as central to numerous astronomical research areas such as radio astronomy,stellar and galactic(Milky Way)studies,exoplanets surveys,cosmology,and solar physics.This article systematically reviews representative applications of artificial intelligence technology to astronomical data processing,with comprehensive description of specific cases:pulsar candidate identification,fast radio burst detection,gravitational wave detection,spectral classification,and radio frequency interference mitigation.Furthermore,it discusses possible future applications to provide perspectives for astronomical research in the artificial intelligence era.展开更多
Cross-matching is a key technique to achieve fusion of multi-band astronomical catalogs. Due to different equipment such as various astronomical telescopes, the existence of measurement errors, and proper motions of t...Cross-matching is a key technique to achieve fusion of multi-band astronomical catalogs. Due to different equipment such as various astronomical telescopes, the existence of measurement errors, and proper motions of the celestial bodies, the same celestial object will have different positions in different catalogs, making it difficult to integrate multi-band or full-band astronomical data. In this study, we propose an online cross-matching method based on pseudo-spherical indexing techniques and develop a service combining with high performance computing system(Taurus) to improve cross-matching efficiency, which is designed for the Data Center of Xinjiang Astronomical Observatory. Specifically, we use Quad Tree Cube to divide the spherical blocks of the celestial object and map the 2D space composed of R.A. and decl. to 1D space and achieve correspondence between real celestial objects and spherical patches. Finally, we verify the performance of the service using Gaia 3 and PPMXL catalogs. Meanwhile, we send the matching results to VO tools-Topcat and Aladin respectively to get visual results. The experimental results show that the service effectively solves the speed bottleneck problem of crossmatching caused by frequent I/O, and significantly improves the retrieval and matching speed of massive astronomical data.展开更多
Astronomical knowledge entities,such as celestial object identifiers,are crucial for literature retrieval and knowledge graph construction,and other research and applications in the field of astronomy.Traditional meth...Astronomical knowledge entities,such as celestial object identifiers,are crucial for literature retrieval and knowledge graph construction,and other research and applications in the field of astronomy.Traditional methods of extracting knowledge entities from texts face numerous challenging obstacles that are difficult to overcome.Consequently,there is a pressing need for improved methods to efficiently extract them.This study explores the potential of pre-trained Large Language Models(LLMs)to perform astronomical knowledge entity extraction(KEE)task from astrophysical journal articles using prompts.We propose a prompting strategy called PromptKEE,which includes five prompt elements,and design eight combination prompts based on them.We select four representative LLMs(Llama-2-70B,GPT-3.5,GPT-4,and Claude 2)and attempt to extract the most typical astronomical knowledge entities,celestial object identifiers and telescope names,from astronomical journal articles using these eight combination prompts.To accommodate their token limitations,we construct two data sets:the full texts and paragraph collections of 30 articles.Leveraging the eight prompts,we test on full texts with GPT-4and Claude 2,on paragraph collections with all LLMs.The experimental results demonstrate that pre-trained LLMs show significant potential in performing KEE tasks,but their performance varies on the two data sets.Furthermore,we analyze some important factors that influence the performance of LLMs in entity extraction and provide insights for future KEE tasks in astrophysical articles using LLMs.Finally,compared to other methods of KEE,LLMs exhibit strong competitiveness in multiple aspects.展开更多
The development of the Paleogene coal seams in China's offshore basin areas generally had the characteristics of coal measures with large thicknesses,large numbers of coal seams,thin single coal seams,poor stabili...The development of the Paleogene coal seams in China's offshore basin areas generally had the characteristics of coal measures with large thicknesses,large numbers of coal seams,thin single coal seams,poor stability,scattered vertical distribution,and a wide distribution range.This study selected the Enping Formation of the ZhuⅠDepression in the northern section of the South China Sea as an example to determine the macro-control factors of the development of the Paleogene coal seam groups.An analysis was carried out on the influencing effects and patterns of the astronomical cycles related to the development of the thin coal seam groups in the region.A floating astronomical time scale of the Enping Formation was established,and the sedimentary time limit of the Enping Formation was determined to be approximately 6.15 Ma±.In addition,the cyclostratigraphy analysis results of the natural gamma-ray data of Well XJ in the Enping Formation of the Xijiang Sag revealed that the development of the thin coal seams had probably been affected by short eccentricity and precession factors.The formation process of coal seams was determined to have been affected by high seasonal contrast,precipitation,and insolation.During the periods with high values of short eccentricity,the seasonal contrasts tended to be high.During those periods,fluctuations in the precession controls resulted in periodic volume changes in precipitation and insolation of the region,resulting in the development of thin coal seams.It was also found that the periods with low precession were the most conducive to coal seam development.On that basis,combined with such factors as sedimentary environmental conditions conducive to the development of thin coal seam groups,this study established a theoretical model of the comprehensive influences of short eccentricity and precession on the development and distribution of Paleogene thin coal seam groups in offshore lacustrine basins.The patterns of the Paleogene astronomical periods and paleoclimate evolution,along with the control factors which impacted the development of thin coal seam groups in offshore lacustrine basins,were revealed.展开更多
Background:Traditional Chinese medicine(TCM)as a traditional Chinese medical practice,has gradually evolved into a coherent and systematic medical science based on natural principles and applied to human beings over t...Background:Traditional Chinese medicine(TCM)as a traditional Chinese medical practice,has gradually evolved into a coherent and systematic medical science based on natural principles and applied to human beings over time.The publication of the“Huangdi Neijing”(The Yellow Emperor’s Classic of Internal Medicine,Written between the Warring States period and the Qin and Han Dynasties,and finally compiled in the Western Han Dynasty,from 475 B.C.E.-8 C.E.)signified the establishment of a comprehensive theoretical framework for Chinese medicine.Due to the perspective of the‘correspondence between heaven and man’in TCM,the purpose of this paper is to explore the origin and development of the basic theories of TCM under the ancient astronomical view and the connection between the two.Methods:This paper emphases on the universe uninty with the humanities,philosophy,and medicine,starting with the forms of stargazing in ancient Chinese astronomy and the natural laws derived by the ancients from their observations of natural celestial phenomena.Results:Astronomy,arts and crafts,divination and medical correlations are based on the sequential changes of natural seasons.Conclusion:The operation of natural celestial phenomena and the characteristics of physical phenomena correspond to human physiology,and the development of the basic theories of Chinese medicine is inextricably linked to ancient astronomy,ancient philosophy,and ancient primeval science.展开更多
With the rapidly aging human population,age-related cognitive decline and dementia are becoming increasingly prevalent worldwide.Aging is considered the main risk factor for cognitive decline and acts through alterati...With the rapidly aging human population,age-related cognitive decline and dementia are becoming increasingly prevalent worldwide.Aging is considered the main risk factor for cognitive decline and acts through alterations in the composition of the gut microbiota,microbial metabolites,and the functions of astrocytes.The microbiota–gut–brain axis has been the focus of multiple studies and is closely associated with cognitive function.This article provides a comprehensive review of the specific changes that occur in the composition of the gut microbiota and microbial metabolites in older individuals and discusses how the aging of astrocytes and reactive astrocytosis are closely related to age-related cognitive decline and neurodegenerative diseases.This article also summarizes the gut microbiota components that affect astrocyte function,mainly through the vagus nerve,immune responses,circadian rhythms,and microbial metabolites.Finally,this article summarizes the mechanism by which the gut microbiota–astrocyte axis plays a role in Alzheimer’s and Parkinson’s diseases.Our findings have revealed the critical role of the microbiota–astrocyte axis in age-related cognitive decline,aiding in a deeper understanding of potential gut microbiome-based adjuvant therapy strategies for this condition.展开更多
BACKGROUND Adult-onset Still's disease(AOSD)is a rare autoinflammatory disease charac-terized by nonspecific symptoms such as fever,rash,sore throat and arthralgia.This paper reports a clinical case of AOSD succes...BACKGROUND Adult-onset Still's disease(AOSD)is a rare autoinflammatory disease charac-terized by nonspecific symptoms such as fever,rash,sore throat and arthralgia.This paper reports a clinical case of AOSD successfully treated with Bo’s abdo-minal acupuncture(BAA).CASE SUMMARY We report a 20-year-old man who suffered from cold exposure,presenting with high fever,rash,sore throat,arthralgia,and elevated erythrocyte sedimentation rate,leukocytosis with neutrophilic predominance,elevated ferritin,elevated C-reactive protein,and negative rheumatoid factors.He was diagnosed with AOSD based on the Yamaguchi criteria.After treatment with traditional Chinese medi-cine(TCM)decoction and prednisone acetate tablets,there was some alleviation of sore throat,joint and muscle pain,and fever,but he still had persistent low-grade fever,rash,sore throat and arthralgia.He went to the TCM acupuncture outpatient department to receive BAA.Abdominal acupoints Zhongwan(CV12),Xiawan(CV10),0.5 cm below Xiawan(CV10),Qihai(CV6),Guanyuan(CV4),bilateral Qixue(KI13),bilateral Huaroumen(ST24),bilateral Shangfengshidian(AB1)and bilateral Daheng(SP15)were selected.After 3 months treatment,all symptoms disappeared,and the laboratory examination returned to normal levels.He did not take glucocorticoids or nonsteroidal anti-inflammatory drugs afterwards,and no relapse was observed during the 3-year follow-up period.CONCLUSION BAA can be used as a complementary medical approach for treatment of AOSD.展开更多
The interaction between metabolic dysfunction and inflammation is central to the development of neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease.Obesity-related conditions like type 2 d...The interaction between metabolic dysfunction and inflammation is central to the development of neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease.Obesity-related conditions like type 2 diabetes and non-alcoholic fatty liver disease exacerbate this relationship.Peripheral lipid accumulation,particularly in the liver,initiates a cascade of inflammatory processes that extend to the brain,influencing critical metabolic regulatory regions.Ceramide and palmitate,key lipid components,along with lipid transporters lipocalin-2 and apolipoprotein E,contribute to neuroinflammation by disrupting blood–brain barrier integrity and promoting gliosis.Peripheral insulin resistance further exacerbates brain insulin resistance and neuroinflammation.Preclinical interventions targeting peripheral lipid metabolism and insulin signaling pathways have shown promise in reducing neuroinflammation in animal models.However,translating these findings to clinical practice requires further investigation into human subjects.In conclusion,metabolic dysfunction,peripheral inflammation,and insulin resistance are integral to neuroinflammation and neurodegeneration.Understanding these complex mechanisms holds potential for identifying novel therapeutic targets and improving outcomes for neurodegenerative diseases.展开更多
The vast majority of in vitro studies have demonstrated that PINK1 phosphorylates Parkin to work together in mitophagy to protect against neuronal degeneration.However,it remains largely unclear how PINK1 and Parkin a...The vast majority of in vitro studies have demonstrated that PINK1 phosphorylates Parkin to work together in mitophagy to protect against neuronal degeneration.However,it remains largely unclear how PINK1 and Parkin are expressed in mammalian brains.This has been difficult to address because of the intrinsically low levels of PINK1 and undetectable levels of phosphorylated Parkin in small animals.Understanding this issue is critical for elucidating the in vivo roles of PINK1 and Parkin.Recently,we showed that the PINK1 kinase is selectively expressed as a truncated form(PINK1–55)in the primate brain.In the present study,we used multiple antibodies,including our recently developed monoclonal anti-PINK1,to validate the selective expression of PINK1 in the primate brain.We found that PINK1 was stably expressed in the monkey brain at postnatal and adulthood stages,which is consistent with the findings that depleting PINK1 can cause neuronal loss in developing and adult monkey brains.PINK1 was enriched in the membrane-bound fractionations,whereas Parkin was soluble with a distinguishable distribution.Immunofluorescent double staining experiments showed that PINK1 and Parkin did not colocalize under physiological conditions in cultured monkey astrocytes,though they did colocalize on mitochondria when the cells were exposed to mitochondrial stress.These findings suggest that PINK1 and Parkin may have distinct roles beyond their well-known function in mitophagy during mitochondrial damage.展开更多
Parkinson’s disease is the second most common progressive neurodegenerative disorder,and few reliable biomarkers are available to track disease progression.The proteins,DNA,mRNA,and lipids carried by exosomes reflect...Parkinson’s disease is the second most common progressive neurodegenerative disorder,and few reliable biomarkers are available to track disease progression.The proteins,DNA,mRNA,and lipids carried by exosomes reflect intracellular changes,and thus can serve as biomarkers for a variety of conditions.In this study,we investigated alterations in the protein content of plasma exosomes derived from patients with Parkinson’s disease and the potential therapeutic roles of these proteins in Parkinson’s disease.Using a tandem mass tag-based quantitative proteomics approach,we characterized the proteomes of plasma exosomes derived from individual patients,identified exosomal protein signatures specific to patients with Parkinson’s disease,and identified N-acetyl-alpha-glucosaminidase as a differentially expressed protein.N-acetyl-alpha-glucosaminidase expression levels in exosomes from the plasma of patients and healthy controls were validated by enzyme-linked immunosorbent assay and western blot.The results demonstrated that the exosomal N-acetyl-alpha-glucosaminidase concentration was not only lower in Parkinson’s disease,but also decreased with increasing Hoehn-Yahr stage,suggesting that N-acetyl-alpha-glucosaminidase could be used to rapidly evaluate Parkinson’s disease severity.Furthermore,western blot and immunohistochemistry analysis showed that N-acetyl-alpha-glucosaminidase levels were markedly reduced both in cells treated with 1-methyl-4-phenylpyridinium and cells overexpressingα-synuclein compared with control cells.Additionally,N-acetyl-alpha-glucosaminidase overexpression significantly increased cell viability and inhibitedα-synuclein expression in 1-methyl-4-phenylpyridinium-treated cells.Taken together,our findings demonstrate for the first time that exosomal N-acetyl-alpha-glucosaminidase may serve as a biomarker for Parkinson’s disease diagnosis,and that N-acetyl-alpha-glucosaminidase may reduceα-synuclein expression and 1-methyl-4-phenylpyridinium-induced neurotoxicity,thus providing a new therapeutic target for Parkinson’s disease.展开更多
Netrin-1 and its receptors play crucial roles in inducing axonal growth and neuronal migration during neuronal development.Their profound impacts then extend into adulthood to encompass the maintenance of neuronal sur...Netrin-1 and its receptors play crucial roles in inducing axonal growth and neuronal migration during neuronal development.Their profound impacts then extend into adulthood to encompass the maintenance of neuronal survival and synaptic function.Increasing amounts of evidence highlight several key points:(1)Diminished Netrin-1 levels exacerbate pathological progression in animal models of Alzheimer’s disease and Parkinson’s disease,and potentially,similar alterations occur in humans.(2)Genetic mutations of Netrin-1 receptors increase an individuals’susceptibility to neurodegenerative disorders.(3)Therapeutic approaches targeting Netrin-1 and its receptors offer the benefits of enhancing memory and motor function.(4)Netrin-1 and its receptors show genetic and epigenetic alterations in a variety of cancers.These findings provide compelling evidence that Netrin-1 and its receptors are crucial targets in neurodegenerative diseases.Through a comprehensive review of Netrin-1 signaling pathways,our objective is to uncover potential therapeutic avenues for neurodegenerative disorders.展开更多
Parkinson’s disease is a common neurodegenerative disease with movement disorders associated with the intracytoplasmic deposition of aggregate proteins such asα-synuclein in neurons.As one of the major intracellular...Parkinson’s disease is a common neurodegenerative disease with movement disorders associated with the intracytoplasmic deposition of aggregate proteins such asα-synuclein in neurons.As one of the major intracellular degradation pathways,the autophagy-lysosome pathway plays an important role in eliminating these proteins.Accumulating evidence has shown that upregulation of the autophagy-lysosome pathway may contribute to the clearance ofα-synuclein aggregates and protect against degeneration of dopaminergic neurons in Parkinson’s disease.Moreover,multiple genes associated with the pathogenesis of Parkinson’s disease are intimately linked to alterations in the autophagy-lysosome pathway.Thus,this pathway appears to be a promising therapeutic target for treatment of Parkinson’s disease.In this review,we briefly introduce the machinery of autophagy.Then,we provide a description of the effects of Parkinson’s disease–related genes on the autophagy-lysosome pathway.Finally,we highlight the potential chemical and genetic therapeutic strategies targeting the autophagy–lysosome pathway and their applications in Parkinson’s disease.展开更多
BACKGROUND Mucosal healing(MH)is the major therapeutic target for Crohn's disease(CD).As the most commonly involved intestinal segment,small bowel(SB)assessment is crucial for CD patients.Yet,it poses a significan...BACKGROUND Mucosal healing(MH)is the major therapeutic target for Crohn's disease(CD).As the most commonly involved intestinal segment,small bowel(SB)assessment is crucial for CD patients.Yet,it poses a significant challenge due to its limited accessibility through conventional endoscopic methods.AIM To establish a noninvasive radiomic model based on computed tomography enterography(CTE)for MH assessment in SBCD patients.METHODS Seventy-three patients diagnosed with SBCD were included and divided into a training cohort(n=55)and a test cohort(n=18).Radiomic features were obtained from CTE images to establish a radiomic model.Patient demographics were analysed to establish a clinical model.A radiomic-clinical nomogram was constructed by combining significant clinical and radiomic features.The diagnostic efficacy and clinical benefit were evaluated via receiver operating characteristic(ROC)curve analysis and decision curve analysis(DCA),respectively.RESULTS Of the 73 patients enrolled,25 patients achieved MH.The radiomic-clinical nomogram had an area under the ROC curve of 0.961(95%confidence interval:0.886-1.000)in the training cohort and 0.958(0.877-1.000)in the test cohort and provided superior clinical benefit to either the clinical or radiomic models alone,as demonstrated by DCA.CONCLUSION These results indicate that the CTE-based radiomic-clinical nomogram is a promising imaging biomarker for MH and serves as a potential noninvasive alternative to enteroscopy for MH assessment in SBCD patients.展开更多
Alzheimer’s disease is a debilitating,progressive neurodegenerative disorder characterized by the progressive accumulation of abnormal proteins,including amyloid plaques and intracellular tau tangles,primarily within...Alzheimer’s disease is a debilitating,progressive neurodegenerative disorder characterized by the progressive accumulation of abnormal proteins,including amyloid plaques and intracellular tau tangles,primarily within the brain.Lysosomes,crucial intracellular organelles responsible for protein degradation,play a key role in maintaining cellular homeostasis.Some studies have suggested a link between the dysregulation of the lysosomal system and pathogenesis of neurodegenerative diseases,including Alzheimer’s disease.Restoring the normal physiological function of lysosomes hold the potential to reduce the pathological burden and improve the symptoms of Alzheimer’s disease.Currently,the efficacy of drugs in treating Alzheimer’s disease is limited,with major challenges in drug delivery efficiency and targeting.Recently,nanomaterials have gained widespread use in Alzheimer’s disease drug research owing to their favorable physical and chemical properties.This review aims to provide a comprehensive overview of recent advances in using nanomaterials(polymeric nanomaterials,nanoemulsions,and carbon-based nanomaterials)to enhance lysosomal function in treating Alzheimer’s disease.This review also explores new concepts and potential therapeutic strategies for Alzheimer’s disease through the integration of nanomaterials and modulation of lysosomal function.In conclusion,this review emphasizes the potential of nanomaterials in modulating lysosomal function to improve the pathological features of Alzheimer’s disease.The application of nanotechnology to the development of Alzheimer’s disease drugs brings new ideas and approaches for future treatment of this disease.展开更多
Astronomers from the National Astronomical Observatories of Chinese Academy of Sciences(NAOC) present an empirical stellar spectra library created with spectra from the LAMOST Data Release 5 (DR5). This library repres...Astronomers from the National Astronomical Observatories of Chinese Academy of Sciences(NAOC) present an empirical stellar spectra library created with spectra from the LAMOST Data Release 5 (DR5). This library represents a uniform data set and covers a wide span of parameter space.展开更多
文摘Few visitors to Beijing would think the area around Beijing Railway Station a nice place to linger after seeing the station flooded with crowds of passengers.Yet a brick build- ing nearby,one of world’s oldest observatories,is well worth a tour. With its well-preserved architecture and equipment the Ancient Observatory is known internationally and has been visited by heads of state,government officials and renowned scientists and astronomers from around the world.
文摘Since the beginning of the 21st century,major earthquakes have frequently occurred worldwide.To explore the impact of astronomical factors on earthquakes,in this study,the statistical analysis method of correlation is used to systematically analyze the effects of astronomical factors,such as solar activity,Earth’s rotation,lunar declination angle,celestial tidal force,and other phenomena on M≥8 global earthquakes at the beginning of the 21st century.With regard to solar activity,this study focuses on the analysis of the 11-year and century cycles of solar activity.The causal relationship of the Earth’s rotation is not obvious in this work and previous works;in contrast,the valley period of the solar activity century cycle may be an important astronomical factor leading to the frequent occurrence of global earthquakes at the beginning of the 21st century.This topic warrants further study.
基金This work is supported by National Key R&D Program of China No.2021YFC2203502 and 2022YFF0711502the National Natural Science Foundation of China(NSFC)(12173077 and 12003062)+5 种基金the Tianshan Innovation Team Plan of Xinjiang Uygur Autonomous Region(2022D14020)the Tianshan Talent Project of Xinjiang Uygur Autonomous Region(2022TSYCCX0095)the Scientific Instrument Developing Project of the Chinese Academy of Sciences,Grant No.PTYQ2022YZZD01China National Astronomical Data Center(NADC)the Operation,Maintenance and Upgrading Fund for Astronomical Telescopes and Facility Instruments,budgeted from the Ministry of Finance of China(MOF)and administrated by the Chinese Academy of Sciences(CAS)Natural Science Foundation of Xinjiang Uygur Autonomous Region(2022D01A360).
文摘Artificial Intelligence(AI)is an interdisciplinary research field with widespread applications.It aims at developing theoretical,methodological,technological,and applied systems that simulate,enhance,and assist human intelligence.Recently,notable accomplishments of artificial intelligence technology have been achieved in astronomical data processing,establishing this technology as central to numerous astronomical research areas such as radio astronomy,stellar and galactic(Milky Way)studies,exoplanets surveys,cosmology,and solar physics.This article systematically reviews representative applications of artificial intelligence technology to astronomical data processing,with comprehensive description of specific cases:pulsar candidate identification,fast radio burst detection,gravitational wave detection,spectral classification,and radio frequency interference mitigation.Furthermore,it discusses possible future applications to provide perspectives for astronomical research in the artificial intelligence era.
基金supported by the National Key R&D Program of China (Nos. 2022YFF0711502 and 2021YFC2203502)the National Natural Science Foundation of China (NSFC)(12173077 and 12003062)+6 种基金the Tianshan Innovation Team Plan of Xinjiang Uygur Autonomous Region (2022D14020)the Tianshan Talent Project of Xinjiang Uygur Autonomous Region(2022TSYCCX0095)the Scientific Instrument Developing Project of the Chinese Academy of Sciences (grant No. PTYQ2022YZZD01)China National Astronomical Data Center (NADC)the Operation,Maintenance and Upgrading Fund for Astronomical Telescopes and Facility Instruments,budgeted from the Ministry of Finance of China (MOF)and administrated by the Chinese Academy of Sciences (CAS)Natural Science Foundation of Xinjiang Uygur Autonomous Region (2022D01A360)supported by Astronomical Big Data Joint Research Center,co-founded by National Astronomical Observatories,Chinese Academy of Sciences。
文摘Cross-matching is a key technique to achieve fusion of multi-band astronomical catalogs. Due to different equipment such as various astronomical telescopes, the existence of measurement errors, and proper motions of the celestial bodies, the same celestial object will have different positions in different catalogs, making it difficult to integrate multi-band or full-band astronomical data. In this study, we propose an online cross-matching method based on pseudo-spherical indexing techniques and develop a service combining with high performance computing system(Taurus) to improve cross-matching efficiency, which is designed for the Data Center of Xinjiang Astronomical Observatory. Specifically, we use Quad Tree Cube to divide the spherical blocks of the celestial object and map the 2D space composed of R.A. and decl. to 1D space and achieve correspondence between real celestial objects and spherical patches. Finally, we verify the performance of the service using Gaia 3 and PPMXL catalogs. Meanwhile, we send the matching results to VO tools-Topcat and Aladin respectively to get visual results. The experimental results show that the service effectively solves the speed bottleneck problem of crossmatching caused by frequent I/O, and significantly improves the retrieval and matching speed of massive astronomical data.
基金supported by the National Natural Science Foundation of China(NSFC,Grant Nos.12273077,72101068,12373110,and 12103070)National Key Research and Development Program of China under grants(2022YFF0712400,2022YFF0711500)+2 种基金the 14th Five-year Informatization Plan of Chinese Academy of Sciences(CAS-WX2021SF-0204)supported by Astronomical Big Data Joint Research Centerco-founded by National Astronomical Observatories,Chinese Academy of Sciences and Alibaba Cloud。
文摘Astronomical knowledge entities,such as celestial object identifiers,are crucial for literature retrieval and knowledge graph construction,and other research and applications in the field of astronomy.Traditional methods of extracting knowledge entities from texts face numerous challenging obstacles that are difficult to overcome.Consequently,there is a pressing need for improved methods to efficiently extract them.This study explores the potential of pre-trained Large Language Models(LLMs)to perform astronomical knowledge entity extraction(KEE)task from astrophysical journal articles using prompts.We propose a prompting strategy called PromptKEE,which includes five prompt elements,and design eight combination prompts based on them.We select four representative LLMs(Llama-2-70B,GPT-3.5,GPT-4,and Claude 2)and attempt to extract the most typical astronomical knowledge entities,celestial object identifiers and telescope names,from astronomical journal articles using these eight combination prompts.To accommodate their token limitations,we construct two data sets:the full texts and paragraph collections of 30 articles.Leveraging the eight prompts,we test on full texts with GPT-4and Claude 2,on paragraph collections with all LLMs.The experimental results demonstrate that pre-trained LLMs show significant potential in performing KEE tasks,but their performance varies on the two data sets.Furthermore,we analyze some important factors that influence the performance of LLMs in entity extraction and provide insights for future KEE tasks in astrophysical articles using LLMs.Finally,compared to other methods of KEE,LLMs exhibit strong competitiveness in multiple aspects.
基金The Scientific Research Project under contract No.CCL2021RCPS172KQNthe Formation Mechanism and Distribution Prediction of Cenozoic Marine Source rocks in Qiongdongnan and Pearl River Mouth Basin under contract No.2021-KT-YXKY01+3 种基金the Resource Potential,Accumulation Mechanism and Breakthrough Direction of Potential Oil-rich Sags in Offshore Basins of China under contract No.2021-KT-YXKY-03the National Natural Science Foundation of China(NSFC)under contract No.42372132the Open Foundation of Hebei Provincial Key Laboratory of Resource Survey and Researchthe National Natural Science Foundation of China(NSFC)under contract Nos 42072188,42272205。
文摘The development of the Paleogene coal seams in China's offshore basin areas generally had the characteristics of coal measures with large thicknesses,large numbers of coal seams,thin single coal seams,poor stability,scattered vertical distribution,and a wide distribution range.This study selected the Enping Formation of the ZhuⅠDepression in the northern section of the South China Sea as an example to determine the macro-control factors of the development of the Paleogene coal seam groups.An analysis was carried out on the influencing effects and patterns of the astronomical cycles related to the development of the thin coal seam groups in the region.A floating astronomical time scale of the Enping Formation was established,and the sedimentary time limit of the Enping Formation was determined to be approximately 6.15 Ma±.In addition,the cyclostratigraphy analysis results of the natural gamma-ray data of Well XJ in the Enping Formation of the Xijiang Sag revealed that the development of the thin coal seams had probably been affected by short eccentricity and precession factors.The formation process of coal seams was determined to have been affected by high seasonal contrast,precipitation,and insolation.During the periods with high values of short eccentricity,the seasonal contrasts tended to be high.During those periods,fluctuations in the precession controls resulted in periodic volume changes in precipitation and insolation of the region,resulting in the development of thin coal seams.It was also found that the periods with low precession were the most conducive to coal seam development.On that basis,combined with such factors as sedimentary environmental conditions conducive to the development of thin coal seam groups,this study established a theoretical model of the comprehensive influences of short eccentricity and precession on the development and distribution of Paleogene thin coal seam groups in offshore lacustrine basins.The patterns of the Paleogene astronomical periods and paleoclimate evolution,along with the control factors which impacted the development of thin coal seam groups in offshore lacustrine basins,were revealed.
基金the support of the Fund’s programme named Yunnan Provincial Science and Technology Department-Applied Basic Research Joint Special Funds of Chinese Medicine(202101AZ070001-061).
文摘Background:Traditional Chinese medicine(TCM)as a traditional Chinese medical practice,has gradually evolved into a coherent and systematic medical science based on natural principles and applied to human beings over time.The publication of the“Huangdi Neijing”(The Yellow Emperor’s Classic of Internal Medicine,Written between the Warring States period and the Qin and Han Dynasties,and finally compiled in the Western Han Dynasty,from 475 B.C.E.-8 C.E.)signified the establishment of a comprehensive theoretical framework for Chinese medicine.Due to the perspective of the‘correspondence between heaven and man’in TCM,the purpose of this paper is to explore the origin and development of the basic theories of TCM under the ancient astronomical view and the connection between the two.Methods:This paper emphases on the universe uninty with the humanities,philosophy,and medicine,starting with the forms of stargazing in ancient Chinese astronomy and the natural laws derived by the ancients from their observations of natural celestial phenomena.Results:Astronomy,arts and crafts,divination and medical correlations are based on the sequential changes of natural seasons.Conclusion:The operation of natural celestial phenomena and the characteristics of physical phenomena correspond to human physiology,and the development of the basic theories of Chinese medicine is inextricably linked to ancient astronomy,ancient philosophy,and ancient primeval science.
基金supported by the Haihe Laboratory of Cell Ecosystem Innovation Foundation,No.22HHXBSS00047(to PL)Graduate Science and Technology Innovation Project of Tianjin,No.2022BKY173(to LZ)Tianjin Municipal Science and Technology Bureau Foundation,No.20201194(to PL).
文摘With the rapidly aging human population,age-related cognitive decline and dementia are becoming increasingly prevalent worldwide.Aging is considered the main risk factor for cognitive decline and acts through alterations in the composition of the gut microbiota,microbial metabolites,and the functions of astrocytes.The microbiota–gut–brain axis has been the focus of multiple studies and is closely associated with cognitive function.This article provides a comprehensive review of the specific changes that occur in the composition of the gut microbiota and microbial metabolites in older individuals and discusses how the aging of astrocytes and reactive astrocytosis are closely related to age-related cognitive decline and neurodegenerative diseases.This article also summarizes the gut microbiota components that affect astrocyte function,mainly through the vagus nerve,immune responses,circadian rhythms,and microbial metabolites.Finally,this article summarizes the mechanism by which the gut microbiota–astrocyte axis plays a role in Alzheimer’s and Parkinson’s diseases.Our findings have revealed the critical role of the microbiota–astrocyte axis in age-related cognitive decline,aiding in a deeper understanding of potential gut microbiome-based adjuvant therapy strategies for this condition.
基金Supported by Beijing Municipal Commission of Education,No.SM202214075001。
文摘BACKGROUND Adult-onset Still's disease(AOSD)is a rare autoinflammatory disease charac-terized by nonspecific symptoms such as fever,rash,sore throat and arthralgia.This paper reports a clinical case of AOSD successfully treated with Bo’s abdo-minal acupuncture(BAA).CASE SUMMARY We report a 20-year-old man who suffered from cold exposure,presenting with high fever,rash,sore throat,arthralgia,and elevated erythrocyte sedimentation rate,leukocytosis with neutrophilic predominance,elevated ferritin,elevated C-reactive protein,and negative rheumatoid factors.He was diagnosed with AOSD based on the Yamaguchi criteria.After treatment with traditional Chinese medi-cine(TCM)decoction and prednisone acetate tablets,there was some alleviation of sore throat,joint and muscle pain,and fever,but he still had persistent low-grade fever,rash,sore throat and arthralgia.He went to the TCM acupuncture outpatient department to receive BAA.Abdominal acupoints Zhongwan(CV12),Xiawan(CV10),0.5 cm below Xiawan(CV10),Qihai(CV6),Guanyuan(CV4),bilateral Qixue(KI13),bilateral Huaroumen(ST24),bilateral Shangfengshidian(AB1)and bilateral Daheng(SP15)were selected.After 3 months treatment,all symptoms disappeared,and the laboratory examination returned to normal levels.He did not take glucocorticoids or nonsteroidal anti-inflammatory drugs afterwards,and no relapse was observed during the 3-year follow-up period.CONCLUSION BAA can be used as a complementary medical approach for treatment of AOSD.
基金supported by a Presidential Postdoctoral Fellowship (021229-00001) from Nanyang Technological University,Singapore (to JZ)a Lee Kong Chian School of Medicine Dean’s Postdoctoral Fellowship (021207-00001) from NTU Singaporea Mistletoe Research Fellowship (022522-00001) from the Momental Foundaton,USA (to CHL)
文摘The interaction between metabolic dysfunction and inflammation is central to the development of neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease.Obesity-related conditions like type 2 diabetes and non-alcoholic fatty liver disease exacerbate this relationship.Peripheral lipid accumulation,particularly in the liver,initiates a cascade of inflammatory processes that extend to the brain,influencing critical metabolic regulatory regions.Ceramide and palmitate,key lipid components,along with lipid transporters lipocalin-2 and apolipoprotein E,contribute to neuroinflammation by disrupting blood–brain barrier integrity and promoting gliosis.Peripheral insulin resistance further exacerbates brain insulin resistance and neuroinflammation.Preclinical interventions targeting peripheral lipid metabolism and insulin signaling pathways have shown promise in reducing neuroinflammation in animal models.However,translating these findings to clinical practice requires further investigation into human subjects.In conclusion,metabolic dysfunction,peripheral inflammation,and insulin resistance are integral to neuroinflammation and neurodegeneration.Understanding these complex mechanisms holds potential for identifying novel therapeutic targets and improving outcomes for neurodegenerative diseases.
基金supported by the National Natural Science Foundation of China,Nos.32070534(to WY),32370567(to WY),82371874(to XL),81830032(to XL),82071421(to SL)Key Field Research and Development Program of Guangdong Province,No.2018B030337001(to XL)+2 种基金Guangzhou Key Research Program on Brain Science,No.202007030008(to XL)Department of Science and Technology of Guangdong Province,Nos.2021ZT09Y007,2020B121201006(to XL)Guangdong Basic and Applied Basic Research Foundation,Nos.2022A1515012301(to WY),2023B1515020031(to WY).
文摘The vast majority of in vitro studies have demonstrated that PINK1 phosphorylates Parkin to work together in mitophagy to protect against neuronal degeneration.However,it remains largely unclear how PINK1 and Parkin are expressed in mammalian brains.This has been difficult to address because of the intrinsically low levels of PINK1 and undetectable levels of phosphorylated Parkin in small animals.Understanding this issue is critical for elucidating the in vivo roles of PINK1 and Parkin.Recently,we showed that the PINK1 kinase is selectively expressed as a truncated form(PINK1–55)in the primate brain.In the present study,we used multiple antibodies,including our recently developed monoclonal anti-PINK1,to validate the selective expression of PINK1 in the primate brain.We found that PINK1 was stably expressed in the monkey brain at postnatal and adulthood stages,which is consistent with the findings that depleting PINK1 can cause neuronal loss in developing and adult monkey brains.PINK1 was enriched in the membrane-bound fractionations,whereas Parkin was soluble with a distinguishable distribution.Immunofluorescent double staining experiments showed that PINK1 and Parkin did not colocalize under physiological conditions in cultured monkey astrocytes,though they did colocalize on mitochondria when the cells were exposed to mitochondrial stress.These findings suggest that PINK1 and Parkin may have distinct roles beyond their well-known function in mitophagy during mitochondrial damage.
基金supported by the Science and Technology(S&T)Program of Hebei Province,No.22377798D(to YZ).
文摘Parkinson’s disease is the second most common progressive neurodegenerative disorder,and few reliable biomarkers are available to track disease progression.The proteins,DNA,mRNA,and lipids carried by exosomes reflect intracellular changes,and thus can serve as biomarkers for a variety of conditions.In this study,we investigated alterations in the protein content of plasma exosomes derived from patients with Parkinson’s disease and the potential therapeutic roles of these proteins in Parkinson’s disease.Using a tandem mass tag-based quantitative proteomics approach,we characterized the proteomes of plasma exosomes derived from individual patients,identified exosomal protein signatures specific to patients with Parkinson’s disease,and identified N-acetyl-alpha-glucosaminidase as a differentially expressed protein.N-acetyl-alpha-glucosaminidase expression levels in exosomes from the plasma of patients and healthy controls were validated by enzyme-linked immunosorbent assay and western blot.The results demonstrated that the exosomal N-acetyl-alpha-glucosaminidase concentration was not only lower in Parkinson’s disease,but also decreased with increasing Hoehn-Yahr stage,suggesting that N-acetyl-alpha-glucosaminidase could be used to rapidly evaluate Parkinson’s disease severity.Furthermore,western blot and immunohistochemistry analysis showed that N-acetyl-alpha-glucosaminidase levels were markedly reduced both in cells treated with 1-methyl-4-phenylpyridinium and cells overexpressingα-synuclein compared with control cells.Additionally,N-acetyl-alpha-glucosaminidase overexpression significantly increased cell viability and inhibitedα-synuclein expression in 1-methyl-4-phenylpyridinium-treated cells.Taken together,our findings demonstrate for the first time that exosomal N-acetyl-alpha-glucosaminidase may serve as a biomarker for Parkinson’s disease diagnosis,and that N-acetyl-alpha-glucosaminidase may reduceα-synuclein expression and 1-methyl-4-phenylpyridinium-induced neurotoxicity,thus providing a new therapeutic target for Parkinson’s disease.
基金supported by the National Natural Science Foundation of China(Youth Science Fund Project),No.81901292(to GC)the National Key Research and Development Program of China,No.2021YFC2502100(to GC)the National Natural Science Foundation of China,No.82071183(to ZZ).
文摘Netrin-1 and its receptors play crucial roles in inducing axonal growth and neuronal migration during neuronal development.Their profound impacts then extend into adulthood to encompass the maintenance of neuronal survival and synaptic function.Increasing amounts of evidence highlight several key points:(1)Diminished Netrin-1 levels exacerbate pathological progression in animal models of Alzheimer’s disease and Parkinson’s disease,and potentially,similar alterations occur in humans.(2)Genetic mutations of Netrin-1 receptors increase an individuals’susceptibility to neurodegenerative disorders.(3)Therapeutic approaches targeting Netrin-1 and its receptors offer the benefits of enhancing memory and motor function.(4)Netrin-1 and its receptors show genetic and epigenetic alterations in a variety of cancers.These findings provide compelling evidence that Netrin-1 and its receptors are crucial targets in neurodegenerative diseases.Through a comprehensive review of Netrin-1 signaling pathways,our objective is to uncover potential therapeutic avenues for neurodegenerative disorders.
基金supported by the National Natural Science Foundation of China,No.82101340(to FJ).
文摘Parkinson’s disease is a common neurodegenerative disease with movement disorders associated with the intracytoplasmic deposition of aggregate proteins such asα-synuclein in neurons.As one of the major intracellular degradation pathways,the autophagy-lysosome pathway plays an important role in eliminating these proteins.Accumulating evidence has shown that upregulation of the autophagy-lysosome pathway may contribute to the clearance ofα-synuclein aggregates and protect against degeneration of dopaminergic neurons in Parkinson’s disease.Moreover,multiple genes associated with the pathogenesis of Parkinson’s disease are intimately linked to alterations in the autophagy-lysosome pathway.Thus,this pathway appears to be a promising therapeutic target for treatment of Parkinson’s disease.In this review,we briefly introduce the machinery of autophagy.Then,we provide a description of the effects of Parkinson’s disease–related genes on the autophagy-lysosome pathway.Finally,we highlight the potential chemical and genetic therapeutic strategies targeting the autophagy–lysosome pathway and their applications in Parkinson’s disease.
基金Supported by Natural Science Foundation of Anhui Medical University,No.2023xkj130.
文摘BACKGROUND Mucosal healing(MH)is the major therapeutic target for Crohn's disease(CD).As the most commonly involved intestinal segment,small bowel(SB)assessment is crucial for CD patients.Yet,it poses a significant challenge due to its limited accessibility through conventional endoscopic methods.AIM To establish a noninvasive radiomic model based on computed tomography enterography(CTE)for MH assessment in SBCD patients.METHODS Seventy-three patients diagnosed with SBCD were included and divided into a training cohort(n=55)and a test cohort(n=18).Radiomic features were obtained from CTE images to establish a radiomic model.Patient demographics were analysed to establish a clinical model.A radiomic-clinical nomogram was constructed by combining significant clinical and radiomic features.The diagnostic efficacy and clinical benefit were evaluated via receiver operating characteristic(ROC)curve analysis and decision curve analysis(DCA),respectively.RESULTS Of the 73 patients enrolled,25 patients achieved MH.The radiomic-clinical nomogram had an area under the ROC curve of 0.961(95%confidence interval:0.886-1.000)in the training cohort and 0.958(0.877-1.000)in the test cohort and provided superior clinical benefit to either the clinical or radiomic models alone,as demonstrated by DCA.CONCLUSION These results indicate that the CTE-based radiomic-clinical nomogram is a promising imaging biomarker for MH and serves as a potential noninvasive alternative to enteroscopy for MH assessment in SBCD patients.
基金supported by the Natural Science Foundation of Shanghai,No.22ZR147750Science and Technology Innovation Action Plan of Shanghai Science and Technology Commission,No.23Y11906600Shanghai Changzheng Hospital Innovative Clinical Research Project,No.2020YLCYJ-Y02(all to YY).
文摘Alzheimer’s disease is a debilitating,progressive neurodegenerative disorder characterized by the progressive accumulation of abnormal proteins,including amyloid plaques and intracellular tau tangles,primarily within the brain.Lysosomes,crucial intracellular organelles responsible for protein degradation,play a key role in maintaining cellular homeostasis.Some studies have suggested a link between the dysregulation of the lysosomal system and pathogenesis of neurodegenerative diseases,including Alzheimer’s disease.Restoring the normal physiological function of lysosomes hold the potential to reduce the pathological burden and improve the symptoms of Alzheimer’s disease.Currently,the efficacy of drugs in treating Alzheimer’s disease is limited,with major challenges in drug delivery efficiency and targeting.Recently,nanomaterials have gained widespread use in Alzheimer’s disease drug research owing to their favorable physical and chemical properties.This review aims to provide a comprehensive overview of recent advances in using nanomaterials(polymeric nanomaterials,nanoemulsions,and carbon-based nanomaterials)to enhance lysosomal function in treating Alzheimer’s disease.This review also explores new concepts and potential therapeutic strategies for Alzheimer’s disease through the integration of nanomaterials and modulation of lysosomal function.In conclusion,this review emphasizes the potential of nanomaterials in modulating lysosomal function to improve the pathological features of Alzheimer’s disease.The application of nanotechnology to the development of Alzheimer’s disease drugs brings new ideas and approaches for future treatment of this disease.
文摘Astronomers from the National Astronomical Observatories of Chinese Academy of Sciences(NAOC) present an empirical stellar spectra library created with spectra from the LAMOST Data Release 5 (DR5). This library represents a uniform data set and covers a wide span of parameter space.