期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Establishment of an astronomical time scale for the Shizigou Formation in the Qaidam Basin,Inner Asia and orbital forced evolution of lakes during The Pliocene
1
作者 DunZhu JiaoBa MingZhen Zhang +6 位作者 GuoLong Liu JianGuo Hui ShaoHua Lin AiJing Li Jing Zhang Jing Peng YiQiao Fu 《Research in Cold and Arid Regions》 CSCD 2023年第5期239-252,共14页
The Qaidam Basin,as the largest inland basin within the Tibetan Plateau,has accumulated more than 10,000 m of Cenozoic continental sediments.It serves as a crucial research area for documenting Cenozoic climate change... The Qaidam Basin,as the largest inland basin within the Tibetan Plateau,has accumulated more than 10,000 m of Cenozoic continental sediments.It serves as a crucial research area for documenting Cenozoic climate changes and plateau uplift processes in the Asian interior.Additionally,the basin holds vast reserves of oil and gas resources,making high-resolution drilling data invaluable for studying paleoclimate.In this study,the longsequence lacustrine deposits of JS1 drill core across the Shizigou Formation in the Yiliping Depression at the western center of the basin were studied,aiming to establish an astronomical timescale for the Shizigou Formation and investigate the characteristics of paleoclimatic changes during the late Miocene to the Pliocene for the Asian interior.The analysis was carried out using high-resolution natural gamma ray(GR)data sequences,employing techniques such as spectral analysis,filtering,and wavelet analysis in cyclostratigraphy.The results indicated the presence of a stable Milankovitch orbital signal was perfectly recorded in the Shizigou Formation,primarily influenced by eccentricity cycles,with weaker obliquity and precession cycles.Using the stable and continuous 405 ka eccentricity cycle in astronomical tuning,a"floating"astronomical timescale with a duration of 6.1 Ma for the Yiliping depression's Shizigou Formation has been established.With reference to previously established stratigraphic age anchor points,an absolute astronomical timescale(2.5–8.6 Ma)has been ultimately provided for the Shizigou Formation.Simultaneously,a clear 100 ka short eccentricity cycle record has been identified during the Pliocene(5.3–2.5 Ma),which corresponds in time with the aridification within the basin during this Pliocene period.In addition,a comparison of the Pliocene natural gamma ray curve of the Qaidam Basin with global ice volume variations indicated that the basin's aridification was influenced by global cooling,with eccentricity-modulated precession cycles controlling solar radiation and subsequently affecting the evolution of lakes in the arid region of Inner Asia. 展开更多
关键词 Qaidam basin Shizigou Formation astronomical time scale astronomical tuning~100 ka orbital eccentricity
下载PDF
Astronomical time scale of the Turonian constrained by multiple paleoclimate proxies 被引量:6
2
作者 Chao Ma Mingsong Li 《Geoscience Frontiers》 SCIE CAS CSCD 2020年第4期1345-1352,共8页
One of the clocks that record the Earth history is(quasi-) periodic astronomical cycles.These cycles influence the climate that can be ultimately stored in sedimentary rocks.By cracking these(quasi-) periodic sediment... One of the clocks that record the Earth history is(quasi-) periodic astronomical cycles.These cycles influence the climate that can be ultimately stored in sedimentary rocks.By cracking these(quasi-) periodic sedimentation signals,high resolution astronomical time scale(ATS) can be obtained.Paleoclimate proxies are widely used to extract astronomical cycles.However different proxies may respond differently to astronomical signals and nonastronomical noises including tectonics,diagenesis,and measurement error among others.Astronomical time scale constructed based on a single proxy where its signal-to-noise ratio is low may have uncertainty that is difficult to evaluate but can be revealed by utilizing other proxies.Here,we test eight astronomical age models using two astrochro no logical methods from four paleoclimate proxies(i.e.,color reflection L~* and b~*,natural gamma radiation,and bulk density) from the Turonian to the Coniacian of the Cretaceous Period at the Demerara Rise in the equatorial Atlantic.The two astrochronological methods are time calibration using long eccentricity bandpass filtering(E1 bandpass) and tracking the long eccentricity from evolutive harmonic analysis(tracking EHA).The statistical mean and standard deviation of four age models from the four proxies are calculated to construct one integrated age model with age uncertainty in each method.Results demonstrate that extracting astronomical signals from multiple paleoclimate proxies is a valid method to estimate age model uncertainties.Anchored at the Cenomanian/Turonian boundary with an age of 93.9 ± 0.15 Ma from biostratigraphy,the ages for CC11/CC12(calcareous nannofossil zones),Turonian/Coniacian(CC12/CC13),CC13/CC14,and Coniacian/Santonian boundaries are 91.25±0.20 Ma,89.87±0.20 Ma,86.36±0.33 Ma,and 86.03±0.32 Ma in E1 bandpass method,compared with 91.17±0.36 Ma,89.74±0.38 Ma,86.13±1.31 Ma,and 85.80±1.33 Ma respectively in tracking EHA method.These results are consistent with previous studies within error and provide a reliable estimation of uncertainties of the ages. 展开更多
关键词 Astrochronology astronomical time scale Uncertainty CRETACEOUS TURONIAN Demerara rise
下载PDF
Cyclostratigraphy and paleoclimate analysis of the Lingshui Formation in Changchang Sag,Qiongdongnan Basin,China
3
作者 Haizhang Yang Wu Tang +3 位作者 Enze Xu Shangfeng Zhang Yaning Wang Min Xu 《Energy Geoscience》 EI 2024年第1期108-120,共13页
The Qiongdongnan Basin,located in the sea between Hainan Island and the Xisha Islands,is a faulted Cenozoic basin on the northern continental margin of the South China Sea.The Changchang Sag,situated in the eastern pa... The Qiongdongnan Basin,located in the sea between Hainan Island and the Xisha Islands,is a faulted Cenozoic basin on the northern continental margin of the South China Sea.The Changchang Sag,situated in the eastern part of the central depressional zone in the deepwater area of the Qiongdongnan Basin,exhibits a near EW-striking morphology and represents an important potential target for oil/gas exploration.However,the age of the interface of the Lingshui Formation remains controversial,which hinders a comprehensive understanding of the tectonic evolution and hydrocarbon accumulation pattern in the Changchang Sag.This study focuses on well A,located in the depositional center of the Changchang Sag,and employs cyclostratigraphic analysis to identify cyclic signals of the Milankovitch cycles recorded in the sedimentary strata.Spectral analysis of natural gamma logging data from this well reveals the presence of 405 kyr long eccentricity cycles,100 kyr short eccentricity cycles,39.3 kyr obliquity cycles,and 20.58 kyr age precession cycles.By employing astronomical tuning,a“floating”astronomical time scale of the Lingshui Formation spanning 5.483 million years(Myr)is established.The top interface of the Oligocene in the International Geological Time Scale 2020(GTS2020),with a geological age of 23.03 Ma,is used as the time anchor to establish a high-precision absolute astronomical age framework for the Lingshui Formation.The results indicate that the bottom interface of the first member of the Lingshui Formation is dated at 23.79 Ma,the bottom interface of the second member is dated at 25.08 Ma,and the bottom interface of the third member is dated at 28.51 Ma.Additionally,the average sedimentation rate during this period is estimated to be 9.261 cm/kyr.Furthermore,paleoclimate and paleoenvironmental reconstructions were carried out through quantitative analysis of spore and pollen assemblages,as well as foraminifera within the Lingshui Formation.These analyses suggest that the deposition of the Lingshui Formation occurred under warm and humid temperate climatic conditions.The results of paleoclimate proxy analysis and comparative fitting analysis of the astronomical time scale confirm that the climate evolution during this period was influenced by astronomical orbital forces,such as eccentricity and precession. 展开更多
关键词 Milankovitch cycle PALEOCLIMATE Qiongdongnan Basin CYCLOSTRATIGRAPHY astronomical time scale
下载PDF
Orbital control on cyclical organic matter accumulation in Early Silurian Longmaxi Formation shales 被引量:8
4
作者 Siding Jin Hucheng Deng +3 位作者 Xing Zhu Yan Liu Sibing Liu Meiyan Fu 《Geoscience Frontiers》 SCIE CAS CSCD 2020年第2期533-545,共13页
High resolution(939 samples)total organic carbon content(TOC)analyses were conducted on the Shuanghe Section of^152.6 m in the Changning area,Sichuan Basin.The sampling section was divided into two units considering t... High resolution(939 samples)total organic carbon content(TOC)analyses were conducted on the Shuanghe Section of^152.6 m in the Changning area,Sichuan Basin.The sampling section was divided into two units considering the distinct-different deposit environment and sediments accumulation rate.The lower part(Unit 1)and the peer part(Unit 2)with high resolution sample spacing(0.08–0.4 m)enables the identification of the precession cycle in two sedimentary sequences with distinct different sedimentary accumulation rate.MTM Power spectral analyses on untuned TOC series reveals significant peaks exceeding above the 95%confidence level and shows that both Unit 1 and Unit 2 have recorded Milankovitch cycles of 405 kyr long eccentricity,short eccentricity,obliquity and precession.The floating astronomical time scale(ATS)was constructed on the Shuanghe Section in the Early Silurian(~439.673–444.681 Ma),and which was calibrated by 405 kyr long eccentricity cycles.The total duration of the Wufeng and Longmaxi shales is 5.01 Myr.The floating ATS used for estimating the duration of the graptolite zones and each stage in the study interval.Finally,we postulated two models that could verify the linkage between orbital cycle and organic accumulation.To make sure whether productivity or preservation is the main factor that under long eccentricity control,the phase correlation between the obtained filtered signal and the theoretical orbital solution should be made clear in the further research. 展开更多
关键词 CYCLOSTRATIGRAPHY Floating astronomical time scale Early Silurian Organic matter accumulation
下载PDF
Climate change response to astronomical forcing during the Oligocene-Miocene transition in the equatorial Atlantic(ODP Site 926) 被引量:3
5
作者 ZOU ZhuoYan HUANG ChunJu +1 位作者 LI MingSong ZHANG Yang 《Science China Earth Sciences》 SCIE EI CAS CSCD 2016年第8期1665-1673,共9页
The Oligocene-Miocene transition period was characterized by a decrease in global CO2 levels, expansion of polar ice sheet, fall in global sea-level, etc. However, the reasons for, and mechanisms of, this global, extr... The Oligocene-Miocene transition period was characterized by a decrease in global CO2 levels, expansion of polar ice sheet, fall in global sea-level, etc. However, the reasons for, and mechanisms of, this global, extreme-cold climate change event(Mi-1) still remain controversial. Our samples from the core of the Ocean Drilling Program(ODP) Leg 154, Site 926, located in the equatorial Atlantic, mainly consist of light-gray, nannofossil chalk with foraminifers interbedded with greenish-gray, clayey, nannofossil chalk sediments. Color variation from light-gray layers(up to 80% carbonate content) to dark layers(60% carbonate content) was observed to occur cyclically at the meter scale. Therefore, we chose color reflectance lightness(L*) data as the paleoclimate proxy on which to perform cyclostratigraphic analysis because it could reflect carbonate content changes. Based on the recognition of the 405 kyr long eccentricity and 40 kyr obliquity cycles of the L* series, we tuned the series to establish an absolute astronomical time scale using the published age of the Oligocene-Miocene boundary(OMB) as the anchor for an absolute age control point. The power spectra of the tuned L* series showed that the long eccentricity signals became significantly weak, while the obliquity signals became strong, from the Late Oligocene to the Early Miocene. The 405 kyr long eccentricity minimum coincided with the 1.2 Myr obliquity node at the OMB, and similar convergences might be closely related to other extreme-cold events in Earth’s history. In addition, the sedimentation accumulation rate, oxygen isotopes of benthonic foraminifers, and rodents’ per-taxon turnover rate from Central Spain showed the same 2 Myr cyclicity, which indicates the significant influence of Earth-orbital forcing on the Earth system and ecological evolution on the million-year time scale. 展开更多
关键词 Late Oligocene-Early Miocene ODP Site 926 LIGHTNESS astronomical time scale astronomical forcing
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部