期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
EFFECTS OF INCOMING FLOW ASYMMETRY ON SHOCK TRAIN STRUCTURES IN CONSTANT-AREA ISOLATORS 被引量:2
1
作者 王成鹏 张堃元 程克明 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2006年第1期1-7,共7页
To simulate the actual flowfield at the exit of the supersonic/hypersonic inlet, a wind tunnel is designed to study the flow in the scramjet isolator under the asymmetric incoming flow. And compression fields in the i... To simulate the actual flowfield at the exit of the supersonic/hypersonic inlet, a wind tunnel is designed to study the flow in the scramjet isolator under the asymmetric incoming flow. And compression fields in the isolator are investigated using wall static and pitot pressure measurements. Three incoming Mach numbers are considered as 1.5, 1.8 and 2. Results show that the increase of the asymmetry of the flow at the isolator entrance leads to the increase of the shock train length in the isolator for a given pressure ratio. Based on the analysis of the flow asymmetry effect at the isolator entrance on the shock train length, a modified correlation is proposed to calculate the length of the shock train. Predicted results of the proposed correlation are in good agreement with the experimental data. 展开更多
关键词 asymmetric supersonic flow shock train isolator design SCRAMJET wind tunnel test
下载PDF
Control of the Asymmetric Flow in Rocket Nozzles 被引量:1
2
作者 Shigeru Matsuo Shotaro Suetsugu +3 位作者 Junji Nagao Tokitada Hashimoto Toshiaki Setoguchi Heuy Dong Kim 《Journal of Thermal Science》 SCIE EI CAS CSCD 2013年第2期97-102,共6页
In some rocket nozzle flows, the existence of the transition from FSS to RSS and the occurrence of asymmetric flow are known in previous researches. As a result, the transition causes excessive side-loads that may dam... In some rocket nozzle flows, the existence of the transition from FSS to RSS and the occurrence of asymmetric flow are known in previous researches. As a result, the transition causes excessive side-loads that may damage the nozzle. Thus, it is important to investigate the method in order to control the asymmetric flow separation. In the present study, the relationship between the asymmetric separation and the rate of change of the pressure ratio with time was investigated from the point of view of the transition from FSS to RSS in the supersonic nozzle experimentally. Further, change of the flow separation by using step and cavity, and the possibility of the control was demonstrated. As a result, it was shown that the method using a cavity was effective for the control of the separation pattern. 展开更多
关键词 Compressible flow asymmetric shock wave Rocket nozzle CONTROL EXPERIMENT
原文传递
Theoretical solutions to three-dimensional asymmetrical shock/shock interaction 被引量:1
3
作者 XIANG GaoXiang WANG Chun +2 位作者 HU ZongMin LI XuDong JIANG ZongLin 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2016年第8期1208-1216,共9页
This paper explores theoretical solutions to the three-dimensional (3D) shock/shock interaction induced by 3D asymmetrical intersecting compression wedges in supersonic inviscid flows. For Mach interactions, an anal... This paper explores theoretical solutions to the three-dimensional (3D) shock/shock interaction induced by 3D asymmetrical intersecting compression wedges in supersonic inviscid flows. For Mach interactions, an analytical method known as spa- tial-dimension reduction, which transforms the problem of 3D steady shock/shock interaction into a two-dimensional (2D) pseudo-steady problem on cross sections, is used to obtain the solutions in the vicinity of the Mach stem. The theoretical solu- tions include the pressure, temperature, density, Mach number behind the Mach stem, and total pressure recovery coefficient. Numerical simulations are performed to validate the theoretical results. Here, the NND scheme is employed by solving 3D in- viscid Euler equations, and good agreements are obtained. The asymmetry of the flow characteristics induced by the wedge angle and sweep angle are thoroughly discussed. 展开更多
关键词 3D asymmetrical shock/shock interaction spatial-dimension reduction Mach reflection flow field theoretical analysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部