The electronic configuration of central metal atoms in single-atom catalysts(SACs)is pivotal in electrochemical CO_(2) reduction reaction(eCO_(2)RR).Herein,chalcogen heteroatoms(e.g.,S,Se,and Te)were incorporated into...The electronic configuration of central metal atoms in single-atom catalysts(SACs)is pivotal in electrochemical CO_(2) reduction reaction(eCO_(2)RR).Herein,chalcogen heteroatoms(e.g.,S,Se,and Te)were incorporated into the symmetric nickel-nitrogen-carbon(Ni-N_(4)-C)configuration to obtain Ni-X-N_(3)-C(X:S,Se,and Te)SACs with asymmetric coordination presented for central Ni atoms.Among these obtained Ni-X-N_(3)-C(X:S,Se,and Te)SACs,Ni-Se-N_(3)-C exhibited superior eCO_(2)RR activity,with CO selectivity reaching~98% at-0.70 V versus reversible hydrogen electrode(RHE).The Zn-CO_(2) battery integrated with Ni-Se-N_(3)-C as cathode and Zn foil as anode achieved a peak power density of 1.82 mW cm^(-2) and maintained remarkable rechargeable stability over 20 h.In-situ spectral investigations and theoretical calculations demonstrated that the chalcogen heteroatoms doped into the Ni-N_(4)-C configuration would break coordination symmetry and trigger charge redistribution,and then regulate the intermediate behaviors and thermodynamic reaction pathways for eCO_(2)RR.Especially,for Ni-Se-N_(3)-C,the introduced Se atoms could significantly raise the d-band center of central Ni atoms and thus remarkably lower the energy barrier for the rate-determining step of ^(*)COOH formation,contributing to the promising eCO_(2)RR performance for high selectivity CO production by competing with hydrogen evolution reaction.展开更多
Designing catalysts with highly active,selectivity,and stability for electrocatalytic CO_(2)to formate is currently a severe challenge.Herein,we developed an electronic structure engineering on carbon nano frameworks ...Designing catalysts with highly active,selectivity,and stability for electrocatalytic CO_(2)to formate is currently a severe challenge.Herein,we developed an electronic structure engineering on carbon nano frameworks embedded with nitrogen and sulfur asymmetrically dual-coordinated indium active sites toward the efficient electrocatalytic CO_(2)reduction reaction.As expected,atomically dispersed In-based catalysts with In-S_(1)N_(3)atomic interface with asymmetrically coordinated exhibited high efficiency for CO_(2)reduction reaction(CO_(2)RR)to formate.It achieved a maximum Faradaic efficiency(FE)of 94.3%towards formate generation at−0.8 V vs.reversible hydrogen electrode(RHE),outperforming that of catalysts with In-S2N2 and In-N4 atomic interface.And at a potential of−1.10 V vs.RHE,In-S_(1)N_(3)achieves an impressive Faradaic efficiency of 93.7%in flow cell.The catalytic performance of In-S_(1)N_(3)sites was confirmed to be enhanced through in-situ X-ray absorption near-edge structure(XANES)measurements under electrochemical conditions.Our discovery provides the guidance for performance regulation of main group metal catalysts toward CO_(2)RR at atomic scale.展开更多
The atomic-level interfacial regulation of single metal sites through heteroatom doping can significantly improve the characteristics of the catalyst and obtain surprising activity.Herein,nickel single-site catalysts(...The atomic-level interfacial regulation of single metal sites through heteroatom doping can significantly improve the characteristics of the catalyst and obtain surprising activity.Herein,nickel single-site catalysts(SSCs)with dual-coordinated phosphorus and nitrogen atoms were developed and confirmed(denoted as Ni-PxNy,x=1,2 and y=3,2).In CO_(2)reduction reaction(CO_(2)RR),the CO current density on Ni-PxNy was significantly higher than that of Ni-N4 catalyst without phosphorus modification.Besides,Ni-P1N3 performed the highest CO Faradaic efficiency(FECO)of 85.0%–98.0%over a wide potential range of−0.65 to−0.95 V(vs.the reversible hydrogen electrode(RHE)).Experimental and theoretical results revealed that the asymmetric Ni-P1N3 site was beneficial to CO_(2)intermediate adsorption/desorption,thereby accelerating the reaction kinetics and boosting CO_(2)RR activity.This work provides an effective method for preparing well-defined dual-coordinated SSCs to improve catalytic performance,targetting to CO_(2)RR applications.展开更多
Developing carbon-based electrocatalysts with excellent N2 adsorption and activation capability holds the key to achieve highly efficient nitrogen reduction reaction(NRR)for reaching its practical application.Here,we ...Developing carbon-based electrocatalysts with excellent N2 adsorption and activation capability holds the key to achieve highly efficient nitrogen reduction reaction(NRR)for reaching its practical application.Here,we report a highly active electrocatalyst--metal-free pyrrolic-N dominated N,S co-doped carbon(pyrr-NSC)for NRR.Based on theoretical and experimental results,it is confirmed that the N and S-dopants practice a working-in-tandem mechanism on pyrr-NSC,where the N-dopants are utilized to create electropositive C sites for enhancing N2 adsorption and the S-dopants are employed to induce electron backdonation for facilitating N2 activation.The synergistic effect of the pyrrolic-N and S-dopants can also suppress the irritating hydrogen evolution reaction,further boosting the NRR performance.This work gives an indication that the combination of two different dopants on electrocatalyst can enhance NRR performance by working in the two tandem steps-the adsorption and activation of N2 molecules,providing a new strategy for NRR electrocatalyst design.展开更多
文摘The electronic configuration of central metal atoms in single-atom catalysts(SACs)is pivotal in electrochemical CO_(2) reduction reaction(eCO_(2)RR).Herein,chalcogen heteroatoms(e.g.,S,Se,and Te)were incorporated into the symmetric nickel-nitrogen-carbon(Ni-N_(4)-C)configuration to obtain Ni-X-N_(3)-C(X:S,Se,and Te)SACs with asymmetric coordination presented for central Ni atoms.Among these obtained Ni-X-N_(3)-C(X:S,Se,and Te)SACs,Ni-Se-N_(3)-C exhibited superior eCO_(2)RR activity,with CO selectivity reaching~98% at-0.70 V versus reversible hydrogen electrode(RHE).The Zn-CO_(2) battery integrated with Ni-Se-N_(3)-C as cathode and Zn foil as anode achieved a peak power density of 1.82 mW cm^(-2) and maintained remarkable rechargeable stability over 20 h.In-situ spectral investigations and theoretical calculations demonstrated that the chalcogen heteroatoms doped into the Ni-N_(4)-C configuration would break coordination symmetry and trigger charge redistribution,and then regulate the intermediate behaviors and thermodynamic reaction pathways for eCO_(2)RR.Especially,for Ni-Se-N_(3)-C,the introduced Se atoms could significantly raise the d-band center of central Ni atoms and thus remarkably lower the energy barrier for the rate-determining step of ^(*)COOH formation,contributing to the promising eCO_(2)RR performance for high selectivity CO production by competing with hydrogen evolution reaction.
基金the Anhui Provincial Department of Education(No.KJ2021A1125)the National Natural Science Foundation of China(No.12374390)+1 种基金Ningbo 3315 Innovative Teams Program(No.2019A-14-C)the member of Youth Innovation Promotion Association Foundation of CAS,China(No.2023310).
文摘Designing catalysts with highly active,selectivity,and stability for electrocatalytic CO_(2)to formate is currently a severe challenge.Herein,we developed an electronic structure engineering on carbon nano frameworks embedded with nitrogen and sulfur asymmetrically dual-coordinated indium active sites toward the efficient electrocatalytic CO_(2)reduction reaction.As expected,atomically dispersed In-based catalysts with In-S_(1)N_(3)atomic interface with asymmetrically coordinated exhibited high efficiency for CO_(2)reduction reaction(CO_(2)RR)to formate.It achieved a maximum Faradaic efficiency(FE)of 94.3%towards formate generation at−0.8 V vs.reversible hydrogen electrode(RHE),outperforming that of catalysts with In-S2N2 and In-N4 atomic interface.And at a potential of−1.10 V vs.RHE,In-S_(1)N_(3)achieves an impressive Faradaic efficiency of 93.7%in flow cell.The catalytic performance of In-S_(1)N_(3)sites was confirmed to be enhanced through in-situ X-ray absorption near-edge structure(XANES)measurements under electrochemical conditions.Our discovery provides the guidance for performance regulation of main group metal catalysts toward CO_(2)RR at atomic scale.
基金supported by the Beijing Natural Science Foundation(No.2212018)China National Petroleum Corporation(CNPC)Innovation Found(No.2021DQ02-0202)the National Natural Science Foundation of China(No.51902013).
文摘The atomic-level interfacial regulation of single metal sites through heteroatom doping can significantly improve the characteristics of the catalyst and obtain surprising activity.Herein,nickel single-site catalysts(SSCs)with dual-coordinated phosphorus and nitrogen atoms were developed and confirmed(denoted as Ni-PxNy,x=1,2 and y=3,2).In CO_(2)reduction reaction(CO_(2)RR),the CO current density on Ni-PxNy was significantly higher than that of Ni-N4 catalyst without phosphorus modification.Besides,Ni-P1N3 performed the highest CO Faradaic efficiency(FECO)of 85.0%–98.0%over a wide potential range of−0.65 to−0.95 V(vs.the reversible hydrogen electrode(RHE)).Experimental and theoretical results revealed that the asymmetric Ni-P1N3 site was beneficial to CO_(2)intermediate adsorption/desorption,thereby accelerating the reaction kinetics and boosting CO_(2)RR activity.This work provides an effective method for preparing well-defined dual-coordinated SSCs to improve catalytic performance,targetting to CO_(2)RR applications.
基金financially supported in part by the National Key R&D Program of China(No.2017YFA0207301)the National Natural Science Foundation of China(Nos.21725102,U1832156,91961106,22075267,and 21950410514)+5 种基金CAS Key Research Program of Frontier Sciences(No.QYZDB-SSW-SLH018)CAS Interdisciplinary Innovation Team,Science and Technological Fund of Anhui Province for Outstanding Youth(No.2008085J05)Youth Innovation Promotion Association of CAS(No.2019444)Chinese Academy of Sciences Presidents International Fellowship Initiative(Nos.2019PC0114 and 2020T130627)China Postdoctoral Science Foundation(No.2019M652190)Young Elite Scientist Sponsorship Program by CAST,and DNL Cooperation Fund,CAS(No.DNL201922).
文摘Developing carbon-based electrocatalysts with excellent N2 adsorption and activation capability holds the key to achieve highly efficient nitrogen reduction reaction(NRR)for reaching its practical application.Here,we report a highly active electrocatalyst--metal-free pyrrolic-N dominated N,S co-doped carbon(pyrr-NSC)for NRR.Based on theoretical and experimental results,it is confirmed that the N and S-dopants practice a working-in-tandem mechanism on pyrr-NSC,where the N-dopants are utilized to create electropositive C sites for enhancing N2 adsorption and the S-dopants are employed to induce electron backdonation for facilitating N2 activation.The synergistic effect of the pyrrolic-N and S-dopants can also suppress the irritating hydrogen evolution reaction,further boosting the NRR performance.This work gives an indication that the combination of two different dopants on electrocatalyst can enhance NRR performance by working in the two tandem steps-the adsorption and activation of N2 molecules,providing a new strategy for NRR electrocatalyst design.