The interannual variability of the sea surface temperature (SST) in the South China Sea (SCS) is investigated according to its relationship with E1 Nifio/La Nifia (EN/LN) using monthly products from ICOADS. The ...The interannual variability of the sea surface temperature (SST) in the South China Sea (SCS) is investigated according to its relationship with E1 Nifio/La Nifia (EN/LN) using monthly products from ICOADS. The SCS SST bears two peaks associated with EN/LN and shows the asymmetric features. Coinciding with the mature phase of EN/LN, the first SST warming/cooling peaks in December(0)-February(1) (DJF(1)) and centers in the southern part. The major difference is in the amplitude associated with the strength of EN/LN. However, the SCS SST anomaly shows distinct difference after the mature phase of EN/LN. The EN SST warm- ing develops a mid-summer peak in June-August(1) (JJA(1)) and persists up to September-October(l), with the same amplitude of the first warming peak. Whereas the LN SST cooling peaks in May(l), it decays slowly until the end of the year, with amplitude much weaker. Comparing with SST and atmospheric circulations, the weak response and early termination of the second cooling is due to the failure of the cyclonic wind anomalies to develop in the northwest Pacific during JJA(1).展开更多
Previous studies have revealed a combination mode (C-mode) occurring in the Indo-Pacific region, arising from nonlinear interactions between ENSO and the western Pacific warm pool annual cycle. This paper evaluates ...Previous studies have revealed a combination mode (C-mode) occurring in the Indo-Pacific region, arising from nonlinear interactions between ENSO and the western Pacific warm pool annual cycle. This paper evaluates the simulation of this C-mode and its asymmetric SST response in HadGEM3 and its resolution sensitivity using three sets of simulations at horizontal resolutions of N96, N216 and N512. The results show that HadGEM3 can capture well the spatial pattern of the C-mode associated surface wind anomalies, as well as the asymmetric response of SST in the tropical Pacific, but it strongly overestimates the explained variability of the C-mode compared to the ENSO mode. The model with the three resolutions is able to reproduce the distinct spectral peaks of the C-mode at the near annual combination frequencies, but the performance in simulating the longer periods is not satisfactory, presumably due to the unrealistic simulation of the ENSO mode. Increasing the horizontal resolution can improve the consistency between atmospheric and oceanic representations of the C-mode, but not necessarily enhance the accuracy of C-mode simulation compared with observation.展开更多
The photonic spin Hall effect has attracted considerable research interest due to its potential applications in spincontrolled nanophotonic devices.However,realization of the asymmetrical photonic spin Hall effect wit...The photonic spin Hall effect has attracted considerable research interest due to its potential applications in spincontrolled nanophotonic devices.However,realization of the asymmetrical photonic spin Hall effect with a single optical element is still a challenge due to the conjugation of the Pancharatnam-Berry phase,which reduces the flexibility in various applications.Here,we demonstrate an asymmetrical spin-dependent beam splitter based on a single-layer dielectric metasurface exhibiting strong and controllable optical response.The metasurface consists of an array of dielectric nanofins,where both varying rotation angles and feature sizes of the unit cells are utilized to create high-efficiency dielectric metasurfaces,which enables to break the conjugated characteristic of phase gradient.Thanks to the superiority of the phase modulation ability,when the fabricated metasurface is under normal incidence with a wavelength of 1550 nm,the lefthanded circular polarization(LCP)light exhibits an anomalous refraction angle of 28.9°,while the right-handed circular polarization(RCP)light transmits directly.The method we proposed can be used for the flexible manipulation of spin photons and has potentials in high efficiency metasurfaces with versatile functionalities,especially with metasurfaces in a compact space.展开更多
The development of a hook-like structure at the apical part of the soil-emerging organs has fascinated botanists for centuries,but how it is initiated remains unclear.Here,we demonstrate with highthroughput infrared i...The development of a hook-like structure at the apical part of the soil-emerging organs has fascinated botanists for centuries,but how it is initiated remains unclear.Here,we demonstrate with highthroughput infrared imaging and 2-D clinostat treatment that,when gravity-induced root bending is absent,apical hook formation still takes place.In such scenarios,hook formation begins with a de novo growth asymmetry at the apical part of a straightly elongating hypocotyl.Remarkably,suchde novo asymmetric growth,but not the following hook enlargement,precedes the establishment of a detectable auxin response asymmetry,and is largely independent of auxin biosynthesis,transport and signaling.Moreover,we found that functional cortical microtubule array is essential for the following enlargement of hook curvature.When microtubule array was disrupted by oryzalin,the polar localization of PIN proteins and the formation of an auxin maximum became impaired at the to-be-hook region.Taken together,we propose a more comprehensive model for apical hook initiation,in which the microtubuledependent polar localization of PINs may mediate the instruction of growth asymmetry that is either stochastically taking place,induced by gravitropic response,or both,to generate a significant auxin gradient that drives the full development of the apical hook.展开更多
Whirling has been adopted for the cost-effective machining of blade-shape components in addition to traditional end milling and flank milling processes.To satisfy the requirements of rotary forming in the blade whirli...Whirling has been adopted for the cost-effective machining of blade-shape components in addition to traditional end milling and flank milling processes.To satisfy the requirements of rotary forming in the blade whirling process,the workpiece must be clamped at both ends in suspension and rotated slowly during machining,which complicates the dynamics.This study aims to identify the dynamic characteristics within the blade whirling operation and present strategies for stability prediction.In this study,the dynamic characteristics of a whirling system are modeled by assuming symmetric and asymmetric parameters.Theoretical prediction frequency response function(FRF)results are compared with experimental results.Moreover,semi-discretization stability lobe diagrams(SLDs)obtained using the dynamic parameters of these models are investigated experimentally.The results show that the asymmetric model is more suitable for describing the whirling system,whereas the symmetric model presents limitations associated with the frequency range and location of measuring points.Finally,a set of airfoil propeller blade whirling operations is conducted to verify the prediction accuracy.展开更多
基金supported by the National Basic Research Program of China(2012CB955603,2010CB950302)the Chinese Academy of Sciences(XDA05090404,LT-0ZZ1202)
文摘The interannual variability of the sea surface temperature (SST) in the South China Sea (SCS) is investigated according to its relationship with E1 Nifio/La Nifia (EN/LN) using monthly products from ICOADS. The SCS SST bears two peaks associated with EN/LN and shows the asymmetric features. Coinciding with the mature phase of EN/LN, the first SST warming/cooling peaks in December(0)-February(1) (DJF(1)) and centers in the southern part. The major difference is in the amplitude associated with the strength of EN/LN. However, the SCS SST anomaly shows distinct difference after the mature phase of EN/LN. The EN SST warm- ing develops a mid-summer peak in June-August(1) (JJA(1)) and persists up to September-October(l), with the same amplitude of the first warming peak. Whereas the LN SST cooling peaks in May(l), it decays slowly until the end of the year, with amplitude much weaker. Comparing with SST and atmospheric circulations, the weak response and early termination of the second cooling is due to the failure of the cyclonic wind anomalies to develop in the northwest Pacific during JJA(1).
基金jointly supported by the China Meteorological Administration Special Public Welfare Research Fund(Grant No.GYHY201506013)the China National Science Foundation(Grant No.41606019)the UK-China Research & Innovation Partnership Fund through the Met Office Climate Science for Service Partnership(CSSP) China as part of the Newton Fund
文摘Previous studies have revealed a combination mode (C-mode) occurring in the Indo-Pacific region, arising from nonlinear interactions between ENSO and the western Pacific warm pool annual cycle. This paper evaluates the simulation of this C-mode and its asymmetric SST response in HadGEM3 and its resolution sensitivity using three sets of simulations at horizontal resolutions of N96, N216 and N512. The results show that HadGEM3 can capture well the spatial pattern of the C-mode associated surface wind anomalies, as well as the asymmetric response of SST in the tropical Pacific, but it strongly overestimates the explained variability of the C-mode compared to the ENSO mode. The model with the three resolutions is able to reproduce the distinct spectral peaks of the C-mode at the near annual combination frequencies, but the performance in simulating the longer periods is not satisfactory, presumably due to the unrealistic simulation of the ENSO mode. Increasing the horizontal resolution can improve the consistency between atmospheric and oceanic representations of the C-mode, but not necessarily enhance the accuracy of C-mode simulation compared with observation.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12074420,U21A20140,and 61905274)the Beijing Municipal Science&Technology Commission,Administrative Commission of Zhongguancun Science Park(Grant No.Z211100004821009)+1 种基金the Chinese Academy of Sciences through the Project for Young Scientists in Basic Research(Grant No.YSBR-021)the Synergic Extreme Condition User Facility
文摘The photonic spin Hall effect has attracted considerable research interest due to its potential applications in spincontrolled nanophotonic devices.However,realization of the asymmetrical photonic spin Hall effect with a single optical element is still a challenge due to the conjugation of the Pancharatnam-Berry phase,which reduces the flexibility in various applications.Here,we demonstrate an asymmetrical spin-dependent beam splitter based on a single-layer dielectric metasurface exhibiting strong and controllable optical response.The metasurface consists of an array of dielectric nanofins,where both varying rotation angles and feature sizes of the unit cells are utilized to create high-efficiency dielectric metasurfaces,which enables to break the conjugated characteristic of phase gradient.Thanks to the superiority of the phase modulation ability,when the fabricated metasurface is under normal incidence with a wavelength of 1550 nm,the lefthanded circular polarization(LCP)light exhibits an anomalous refraction angle of 28.9°,while the right-handed circular polarization(RCP)light transmits directly.The method we proposed can be used for the flexible manipulation of spin photons and has potentials in high efficiency metasurfaces with versatile functionalities,especially with metasurfaces in a compact space.
基金funded by the Southern University of Science and Technology for scientific research start-ups(Grant No.Y01226124 to H.G.)National Natural Science Foundation of China(Grant No.31700239 to Y.W.)+1 种基金Shenzhen Science and Technology Innovation Program(Grant No.JCYJ20170817105503416 to W.L.)Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes(SUSTech)(2019KSYS006 to H.G.)。
文摘The development of a hook-like structure at the apical part of the soil-emerging organs has fascinated botanists for centuries,but how it is initiated remains unclear.Here,we demonstrate with highthroughput infrared imaging and 2-D clinostat treatment that,when gravity-induced root bending is absent,apical hook formation still takes place.In such scenarios,hook formation begins with a de novo growth asymmetry at the apical part of a straightly elongating hypocotyl.Remarkably,suchde novo asymmetric growth,but not the following hook enlargement,precedes the establishment of a detectable auxin response asymmetry,and is largely independent of auxin biosynthesis,transport and signaling.Moreover,we found that functional cortical microtubule array is essential for the following enlargement of hook curvature.When microtubule array was disrupted by oryzalin,the polar localization of PIN proteins and the formation of an auxin maximum became impaired at the to-be-hook region.Taken together,we propose a more comprehensive model for apical hook initiation,in which the microtubuledependent polar localization of PINs may mediate the instruction of growth asymmetry that is either stochastically taking place,induced by gravitropic response,or both,to generate a significant auxin gradient that drives the full development of the apical hook.
基金the Shandong Provincial Natural Science Foundation,China(Grant No.ZR2017MEE021)for the financial support toward this research.
文摘Whirling has been adopted for the cost-effective machining of blade-shape components in addition to traditional end milling and flank milling processes.To satisfy the requirements of rotary forming in the blade whirling process,the workpiece must be clamped at both ends in suspension and rotated slowly during machining,which complicates the dynamics.This study aims to identify the dynamic characteristics within the blade whirling operation and present strategies for stability prediction.In this study,the dynamic characteristics of a whirling system are modeled by assuming symmetric and asymmetric parameters.Theoretical prediction frequency response function(FRF)results are compared with experimental results.Moreover,semi-discretization stability lobe diagrams(SLDs)obtained using the dynamic parameters of these models are investigated experimentally.The results show that the asymmetric model is more suitable for describing the whirling system,whereas the symmetric model presents limitations associated with the frequency range and location of measuring points.Finally,a set of airfoil propeller blade whirling operations is conducted to verify the prediction accuracy.