Salter's duck,an asymmetrical wave energy converter(WEC)device,showed high efficiency in extracting energy from 2D regular waves in the past;yet,challenges remain for fluctuating wave conditions.These can potentia...Salter's duck,an asymmetrical wave energy converter(WEC)device,showed high efficiency in extracting energy from 2D regular waves in the past;yet,challenges remain for fluctuating wave conditions.These can potentially be addressed by adopting a negative stiffness mechanism(NSM)in WEC devices to enhance system efficiency,even in highly nonlinear and steep 3D waves.A weakly nonlinear model was developed which incorporated a nonlinear restoring moment and NSM into the linear formulations and was applied to an asymmetric WEC using a time domain potential flow model.The model was initially validated by comparing it with published experimental and numerical computational fluid dynamics results.The current results were in good agreement with the published results.It was found that the energy extraction increased in the range of 6%to 17%during the evaluation of the effectiveness of the NSM in regular waves.Under irregular wave conditions,specifically at the design wave conditions for the selected test site,the energy extraction increased by 2.4%,with annual energy production increments of approximately 0.8MWh.The findings highlight the potential of NSM in enhancing the performance of asymmetric WEC devices,indicating more efficient energy extraction under various wave conditions.展开更多
We introduce an asymmetrical mirror design to a 140 GHz TE_(22,6) quasi-optical(QO) mode converter system to correct the asymmetry of the beam's field distribution caused by the Denisov launcher. By such optimiza...We introduce an asymmetrical mirror design to a 140 GHz TE_(22,6) quasi-optical(QO) mode converter system to correct the asymmetry of the beam's field distribution caused by the Denisov launcher. By such optimization, the output beam with better symmetrical distribution is obtained at the system's output window. Based on the calculated results,the QO mode converter system's performance is already satisfying without iterative phase correction. Scalar and vector correlation coefficients between the output beam and the fundamental Gaussian beam are respectively 98.4% and 93.0%,while the total power transmission efficiency of the converter system is 94.4%. The assistance of optical ray tracing to the design of such QO mode converters is introduced and discussed as well.展开更多
Polarization manipulation of light is of great importance because it could promote development of wireless communications,biosensing,and polarization imaging.In order to use natural light more efficiently,it is highly...Polarization manipulation of light is of great importance because it could promote development of wireless communications,biosensing,and polarization imaging.In order to use natural light more efficiently,it is highly demanded to design and fabricate high performance asymmetric polarization converters which could covert the natural light to one particular linearly polarized light with high efficiency.Traditionally,polarizers could be achieved by controllers with crystals and polymers exhibiting birefringence.However,the polarizers are bulky in size and the theoretical conversion efficiency of the polarizers is limited to 0.5 with unpolarized light incidence.In this paper,we propose a polarization converter which could preserve high transmission for one linearly polarized light and convert the orthogonal linearly polarized light to its cross-polarized with high transmittance based on a multi-layer chiral metasurface.Theoretical results show that normally incident y-polarized light preserves high transmittance for the wavelength range from 685 nm to 800 nm while the orthogonal normally incident x-polarized light is efficiently converted to the y-polarized light with high transmittance from 725 nm to 748 nm.Accordingly,for unpolarized light incidence,transmittance larger than 0.5 has been successfully achieved in a broadband wavelength range from 712 nm to 773 nm with a maximum transmittance of 0.58 at 732 nm.展开更多
Based on the topological analysis of three-phase matrix AC to AC conversion circuit, an AC to AC nine-switch matrix isequivalent to rectification part and conversion part. The Matrix converter can be viewed as AC-DC-A...Based on the topological analysis of three-phase matrix AC to AC conversion circuit, an AC to AC nine-switch matrix isequivalent to rectification part and conversion part. The Matrix converter can be viewed as AC-DC-AC converter, the asymmetricregular sampling method SPWM(Sine Pulse Width Modulation) is studied and applied in the three-phase matrix AC to AC converter,Based on Matlab/simulink the simulation of the matrix converter with such strategy is carried out. Inductive load simulation is carriedout on the matrix converter prototype. The simulation results verify the workability of the asymmetric regular sampling method SPWMstrategy for matrix converter.展开更多
A semiconductor optical amplifier and electroabsorption modulator monolithically integrated with a spotsize converter input and output is fabricated by means of selective area growth,quantum well intermixing,and asymm...A semiconductor optical amplifier and electroabsorption modulator monolithically integrated with a spotsize converter input and output is fabricated by means of selective area growth,quantum well intermixing,and asymmetric twin waveguide technology. A 1550-1600nm lossless operation with a high DC extinction ratio of 25dB and more than 10GHz 3dB bandwidth are successfully achieved. The output beam divergence angles of the device in the horizontal and vertical directions are as small as 7.3°× 18.0°, respectively, resulting in a 3.0dB coupling loss with a cleaved single-mode optical fiber.展开更多
This paper presents new converter for torque ripple minimization of three phases Switched Reluctance Motor (SRM). The proposed converter has basic passive circuit which includes two diodes and one capacitor to the fro...This paper presents new converter for torque ripple minimization of three phases Switched Reluctance Motor (SRM). The proposed converter has basic passive circuit which includes two diodes and one capacitor to the front end of an asymmetric converter with a specific end goal to get a high magnetization and demagnetization voltage. In view of this boost capacitor, the charge and demagnetization voltage are higher. Accordingly, it can reduce the negative torque generation from the tail current and enhance the output power. The proposed converter circuit is equipped for minimizing the SRM torque ripple furthermore enhancing the average torque when contrasted with traditional converter circuit. A three-phase SRM is modeled and the simulation output for no load and stacked condition depicts that the proposed converter has better performance when contrasted with traditional converter. It is appropriate for electric vehicle applications. The proposed framework is simulated by utilizing MATLAB/Simulink environment and their outcomes are examined extravagantly.展开更多
All optical network (AON) is a hot topic in recent studies of optical fiber communications. Key techniques in AON include optical switching/routing, optical cross connection (OXC), all optical wavelength conversi...All optical network (AON) is a hot topic in recent studies of optical fiber communications. Key techniques in AON include optical switching/routing, optical cross connection (OXC), all optical wavelength conversion (AOWC), all optical buffering, etc. Opti- cal switching/routing is in fact wavelength switching/ routing. OXC and wavelength conversion (WC) are introduced into cross nodes so that a virtual wavelength path is established. With WC, communication route is formed only if there is unused wavelength in an individual segment link. The rate wavelength usage is thus greatly increased. The blocking rate of network can be reduced by adding WCs, especially for huge capacity multiple nodes ones. Therefore, WC has attracted much attention in basic research of optical communication and is used in some experimental networks.This dissertation studies all optic wavelength conversion and its application, with the contributions in the following five aspects.展开更多
This paper introduces a novel single-phase asymmetrical multilevel inverter suitable for hybrid renewable energy sources. The proposed inverter consists of two isolated DC sources and six power semiconductor controlle...This paper introduces a novel single-phase asymmetrical multilevel inverter suitable for hybrid renewable energy sources. The proposed inverter consists of two isolated DC sources and six power semiconductor controlled switches. The suggested inverter is capable of generating seven-level output when the input DC voltage is taken in the ratio of 1:2. The higher magnitude DC source is fed from Photo Voltaic (PV) panels, whereas the lower magnitude DC source is fed from Wind Turbine (WT) driven Permanent Magnet DC (PMDC) generator. Both the renewable energy sources are connected to the inverter via two DC-DC boost converters connected in cascade (i.e. one for maximum power point tracking and another for DC-link voltage control). The proposed hybrid renewable energy source inverter is connected to single-phase grid via proper control systems. The complete system is simulated using MATLAB/SIMULINK and the results are presented in detail.展开更多
A novel scheme for all-optical inverted wavelength conversion with 40-Gb/s pseudorandom bit sequences (PRBSs) based on a modified terahertz optical asymmetric demultiplexer (TOAD) is proposed. The performance of the p...A novel scheme for all-optical inverted wavelength conversion with 40-Gb/s pseudorandom bit sequences (PRBSs) based on a modified terahertz optical asymmetric demultiplexer (TOAD) is proposed. The performance of the proposed wavelength converter is analyzed in term of extinction ratio (ER) through numerical simulations. For a typical ER of 10 dB, some key characteristic parameters of the semiconductor optical amplifier (SOA) are designed. With the properly designed parameters, a high quality eye diagram is achievable, indicating that the amplitude fluctuation of the output signal is effectively reduced.展开更多
基金financially supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(Grant No.2022R1I1A1A01069442)the 2024 Hongik University Research Fund。
文摘Salter's duck,an asymmetrical wave energy converter(WEC)device,showed high efficiency in extracting energy from 2D regular waves in the past;yet,challenges remain for fluctuating wave conditions.These can potentially be addressed by adopting a negative stiffness mechanism(NSM)in WEC devices to enhance system efficiency,even in highly nonlinear and steep 3D waves.A weakly nonlinear model was developed which incorporated a nonlinear restoring moment and NSM into the linear formulations and was applied to an asymmetric WEC using a time domain potential flow model.The model was initially validated by comparing it with published experimental and numerical computational fluid dynamics results.The current results were in good agreement with the published results.It was found that the energy extraction increased in the range of 6%to 17%during the evaluation of the effectiveness of the NSM in regular waves.Under irregular wave conditions,specifically at the design wave conditions for the selected test site,the energy extraction increased by 2.4%,with annual energy production increments of approximately 0.8MWh.The findings highlight the potential of NSM in enhancing the performance of asymmetric WEC devices,indicating more efficient energy extraction under various wave conditions.
基金Project supported by the National Natural Science Foundation of China(Grant No.61671032)
文摘We introduce an asymmetrical mirror design to a 140 GHz TE_(22,6) quasi-optical(QO) mode converter system to correct the asymmetry of the beam's field distribution caused by the Denisov launcher. By such optimization, the output beam with better symmetrical distribution is obtained at the system's output window. Based on the calculated results,the QO mode converter system's performance is already satisfying without iterative phase correction. Scalar and vector correlation coefficients between the output beam and the fundamental Gaussian beam are respectively 98.4% and 93.0%,while the total power transmission efficiency of the converter system is 94.4%. The assistance of optical ray tracing to the design of such QO mode converters is introduced and discussed as well.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62075173 and 12274478)the National Key Research and Development Program of China(Grant Nos.2021YFB2800302 and 2021YFB2800604).
文摘Polarization manipulation of light is of great importance because it could promote development of wireless communications,biosensing,and polarization imaging.In order to use natural light more efficiently,it is highly demanded to design and fabricate high performance asymmetric polarization converters which could covert the natural light to one particular linearly polarized light with high efficiency.Traditionally,polarizers could be achieved by controllers with crystals and polymers exhibiting birefringence.However,the polarizers are bulky in size and the theoretical conversion efficiency of the polarizers is limited to 0.5 with unpolarized light incidence.In this paper,we propose a polarization converter which could preserve high transmission for one linearly polarized light and convert the orthogonal linearly polarized light to its cross-polarized with high transmittance based on a multi-layer chiral metasurface.Theoretical results show that normally incident y-polarized light preserves high transmittance for the wavelength range from 685 nm to 800 nm while the orthogonal normally incident x-polarized light is efficiently converted to the y-polarized light with high transmittance from 725 nm to 748 nm.Accordingly,for unpolarized light incidence,transmittance larger than 0.5 has been successfully achieved in a broadband wavelength range from 712 nm to 773 nm with a maximum transmittance of 0.58 at 732 nm.
文摘Based on the topological analysis of three-phase matrix AC to AC conversion circuit, an AC to AC nine-switch matrix isequivalent to rectification part and conversion part. The Matrix converter can be viewed as AC-DC-AC converter, the asymmetricregular sampling method SPWM(Sine Pulse Width Modulation) is studied and applied in the three-phase matrix AC to AC converter,Based on Matlab/simulink the simulation of the matrix converter with such strategy is carried out. Inductive load simulation is carriedout on the matrix converter prototype. The simulation results verify the workability of the asymmetric regular sampling method SPWMstrategy for matrix converter.
文摘A semiconductor optical amplifier and electroabsorption modulator monolithically integrated with a spotsize converter input and output is fabricated by means of selective area growth,quantum well intermixing,and asymmetric twin waveguide technology. A 1550-1600nm lossless operation with a high DC extinction ratio of 25dB and more than 10GHz 3dB bandwidth are successfully achieved. The output beam divergence angles of the device in the horizontal and vertical directions are as small as 7.3°× 18.0°, respectively, resulting in a 3.0dB coupling loss with a cleaved single-mode optical fiber.
文摘This paper presents new converter for torque ripple minimization of three phases Switched Reluctance Motor (SRM). The proposed converter has basic passive circuit which includes two diodes and one capacitor to the front end of an asymmetric converter with a specific end goal to get a high magnetization and demagnetization voltage. In view of this boost capacitor, the charge and demagnetization voltage are higher. Accordingly, it can reduce the negative torque generation from the tail current and enhance the output power. The proposed converter circuit is equipped for minimizing the SRM torque ripple furthermore enhancing the average torque when contrasted with traditional converter circuit. A three-phase SRM is modeled and the simulation output for no load and stacked condition depicts that the proposed converter has better performance when contrasted with traditional converter. It is appropriate for electric vehicle applications. The proposed framework is simulated by utilizing MATLAB/Simulink environment and their outcomes are examined extravagantly.
文摘All optical network (AON) is a hot topic in recent studies of optical fiber communications. Key techniques in AON include optical switching/routing, optical cross connection (OXC), all optical wavelength conversion (AOWC), all optical buffering, etc. Opti- cal switching/routing is in fact wavelength switching/ routing. OXC and wavelength conversion (WC) are introduced into cross nodes so that a virtual wavelength path is established. With WC, communication route is formed only if there is unused wavelength in an individual segment link. The rate wavelength usage is thus greatly increased. The blocking rate of network can be reduced by adding WCs, especially for huge capacity multiple nodes ones. Therefore, WC has attracted much attention in basic research of optical communication and is used in some experimental networks.This dissertation studies all optic wavelength conversion and its application, with the contributions in the following five aspects.
文摘This paper introduces a novel single-phase asymmetrical multilevel inverter suitable for hybrid renewable energy sources. The proposed inverter consists of two isolated DC sources and six power semiconductor controlled switches. The suggested inverter is capable of generating seven-level output when the input DC voltage is taken in the ratio of 1:2. The higher magnitude DC source is fed from Photo Voltaic (PV) panels, whereas the lower magnitude DC source is fed from Wind Turbine (WT) driven Permanent Magnet DC (PMDC) generator. Both the renewable energy sources are connected to the inverter via two DC-DC boost converters connected in cascade (i.e. one for maximum power point tracking and another for DC-link voltage control). The proposed hybrid renewable energy source inverter is connected to single-phase grid via proper control systems. The complete system is simulated using MATLAB/SIMULINK and the results are presented in detail.
文摘A novel scheme for all-optical inverted wavelength conversion with 40-Gb/s pseudorandom bit sequences (PRBSs) based on a modified terahertz optical asymmetric demultiplexer (TOAD) is proposed. The performance of the proposed wavelength converter is analyzed in term of extinction ratio (ER) through numerical simulations. For a typical ER of 10 dB, some key characteristic parameters of the semiconductor optical amplifier (SOA) are designed. With the properly designed parameters, a high quality eye diagram is achievable, indicating that the amplitude fluctuation of the output signal is effectively reduced.