期刊文献+
共找到56篇文章
< 1 2 3 >
每页显示 20 50 100
Advanced Asymmetrical Supercapacitors Based on Graphene Hybrid Materials 被引量:37
1
作者 Hailiang Wang Yongye Liang Tissaphern Mirfakhrai Zhuo Chen Hernan Sanchez Casalongue Hongjie Dai 《Nano Research》 SCIE EI CAS CSCD 2011年第8期729-736,共8页
Supercapacitors operating in aqueous solutions are low cost energy storage devices with high cycling stability and fast charging and discharging capabilities, but generally suffer from low energy densities. Here, we g... Supercapacitors operating in aqueous solutions are low cost energy storage devices with high cycling stability and fast charging and discharging capabilities, but generally suffer from low energy densities. Here, we grow Ni(OH)2 nanoplates and RuO2 nanoparticles on high quality graphene sheets in order to maximize the specific capacitances of these materials. We then pair up a Ni(OH)2/graphene electrode with a RuO2/graphene electrode to afford a high performance asymmetrical supercapacitor with high energy and power density operating in aqueous solutions at a voltage of -1.5 V. The asymmetrical supercapacitor exhibits significantly higher energy densities than symmetrical RuO2-RuO2 supercapacitors or asymmetrical supercapacitors based on either RuO2- carbon or Ni(OH)2-carbon electrode pairs. A high energy density of -48 W.h/kg at a power density of -0.23 kW/kg, and a high power density of -21 kW/kg at an energy density of N14 W-h/kg have been achieved with our Ni(OH)2/graphene and RuO2/graphene asymmetrical supercapacitor. Thus, pairing up metal-oxide/graphene and metal-hydroxide/graphene hybrid materials for asymmetrical supercapacitors represents a new approach to high performance energy storage. 展开更多
关键词 asymmetrical supercapacitor GRAPHENE Ni(OH)2 RUO2 hybrid nanomaterials energy storage
原文传递
Efficient conversion of lignin waste and self-assembly synthesis of C@MnCo_(2)O_(4)for asymmetric supercapacitors with high energy density 被引量:1
2
作者 Jiahui Mu Cuihuan Li +3 位作者 Jiankang Zhang Xianliang Song Sheng Chen Feng Xu 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第5期1479-1487,共9页
Lignin waste from the papermaking and biorefineries industry is a significantly promising renewable resource to prepare advanced carbon materials for diverse applications,such as the electrodes of supercapacitors;howe... Lignin waste from the papermaking and biorefineries industry is a significantly promising renewable resource to prepare advanced carbon materials for diverse applications,such as the electrodes of supercapacitors;however,the improvement of their energy density remains a challenge.Here,we design a green and universal approach to prepare the composite electrode material,which is composed of lignin-phenolformaldehyde resins derived hierarchical porous carbon(LR-HPC)as conductive skeletons and the self-assembly manganese cobaltite(MnCo_(2)O_(4))nanocrystals as active sites.The synthesized C@MnCo_(2)O_(4)composite has an abundant porous structure and superior electronic conductivity,allowing for more charge/electron mass transfer channels and active sites for the redox reactions.The composite shows excellent electrochemical performance,such as the maximum specific capacitance of~726 mF cm^(-2)at 0.5 mV s^(-1),due to the significantly enhanced interactive interface between LR-HPC and MnCo_(2)O_(4)crystals.The assembled all-solid-state asymmetric supercapacitor,with the LR-HPC and C@MnCo_(2)O_(4)as cathode and anode,respectively,exhibits the highest volumetric energy density of 0.68 mWh cm^(-3)at a power density of 8.2 mW cm^(-3).Moreover,this device shows a high capacity retention ratio of~87.6%at 5 mA cm^(-2)after 5000 cycles. 展开更多
关键词 C@MnCo_(2)O_(4) LIGNIN SELF-ASSEMBLY asymmetrical supercapacitors
下载PDF
A novel polyaniline/mesoporous carbon nano-composite electrode for asymmetric supercapacitor 被引量:11
3
作者 Jian Jun Cai Ling Bin Kong +2 位作者 Jing Zhang Yong Chun Luo Long Kang 《Chinese Chemical Letters》 SCIE CAS CSCD 2010年第12期1509-1512,共4页
A novel nano-composite of polyaniline/mesoporous carbon(PANI/CMK-3) was prepared with mesoporous carbon(CMK-3) serving as the support.Electrochemical asymmetric capacitors have been successfully designed by using ... A novel nano-composite of polyaniline/mesoporous carbon(PANI/CMK-3) was prepared with mesoporous carbon(CMK-3) serving as the support.Electrochemical asymmetric capacitors have been successfully designed by using PANI/CMK-3 composite and CMK-3 as positive and negative electrode,respectively.The results showed that the discharge capacity of the asymmetric capacitor could reach 87.4 F/g under the current density of 5 mA/cm^2 and cell voltage of 1.4 V.The energy density of the asymmetric capacitor was up to 23.8 Wh/kg with a power density of 206 W/kg.Furthermore,PANI/CMK-3-CMK-3 asymmetric capacitor using this PANI/CMK-3 nano-composite could be activated quickly and possess high charge-discharge efficiency. 展开更多
关键词 Mesoporous carbon POLYANILINE Asymmetric supercapacitor Energy density
下载PDF
Facile synthesis of high electrical conductive CoP via solid-state synthetic routes for supercapacitors 被引量:9
4
作者 Yumei Hu Maocheng Liu +2 位作者 Qingqing Yang Lingbin Kong Long Kang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第1期49-55,共7页
Co-P precursor was prepared by a mechanical alloying method and then is controlled to synthesis of CoP phase through an annealing method. The optimal conditions of ball milling and annealing temperature are investigat... Co-P precursor was prepared by a mechanical alloying method and then is controlled to synthesis of CoP phase through an annealing method. The optimal conditions of ball milling and annealing temperature are investigated. The CoP exhibits higher electrical conductivity than graphite and cobalt oxide, showing excellent pseudocapacitive properties due its high electrical conductivity which can result in a fast electron transfer in high rate charge-discharge possess. The as-obtained CoP electrode achieves a high specific capacitance of 447.5 Fig at 1 Aug, and displays an excellent rate capability as well as good cycling stability. Besides, the asymmetric supercapacitor (ASC) based on the CoP as the positive electrode and activated carbon (AC) as the negative electrode was assembled and displayed a high rate capability (60% of the capacitance is retained when the current density increased from 1 Aug to 12 Aug), excellent cycling stability (96.7% of the initial capacitance is retained after 5000 cycles), and a superior specific energy of 19 Wh/kg at a power density of 350.8 W/kg. The results, suggest that the CoP electrode materials have a great potential for developing high-performance electrochemical energy storage devices. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved. 展开更多
关键词 COP High electrical conductivity Pseudocapacitive properties Asymmetric supercapacitor
下载PDF
High-Performance Flexible Asymmetric Supercapacitor Based on CoAl-LDH and rGO Electrodes 被引量:10
5
作者 Shuoshuo Li Pengpeng Cheng +5 位作者 Jiaxian Luo Dan Zhou Weiming Xu Jingwei Li Ruchun Li Dingsheng Yuan 《Nano-Micro Letters》 SCIE EI CAS 2017年第3期72-81,共10页
A flexible asymmetric supercapacitor(ASC)based on a Co Al-layered double hydroxide(Co Al-LDH)electrode and a reduced graphene oxide(r GO) electrode was successfully fabricated. The Co Al-LDH electrode as a positive el... A flexible asymmetric supercapacitor(ASC)based on a Co Al-layered double hydroxide(Co Al-LDH)electrode and a reduced graphene oxide(r GO) electrode was successfully fabricated. The Co Al-LDH electrode as a positive electrode was synthesized by directly growing Co Al-LDH nanosheet arrays on a carbon cloth(CC)through a facile hydrothermal method, and it delivered a specific capacitance of 616.9 F g^(-1)at a current density of1 A g^(-1). The r GO electrode as a negative electrode was synthesized by coating r GO on the CC via a simple dipcoating method and revealed a specific capacitance of110.0 F g^(-1)at a current density of 2 A g^(-1). Ultimately,the advanced ASC offered a broad voltage window(1.7 V)and exhibited a high superficial capacitance of1.77 F cm^(-2)at 2 m A cm^(-2)and a high energy density of0.71 m Wh cm^(-2)at a power density of 17.05 m W cm^(-2),along with an excellent cycle stability(92.9% capacitance retention over 8000 charge–discharge cycles). 展开更多
关键词 Flexible asymmetric supercapacitor Layer double hydroxides Reduced graphene oxide Cycle stability
下载PDF
KOH activated carbon derived from biomass-banana fibers as an efficient negative electrode in high performance asymmetric supercapacitor 被引量:5
6
作者 ChaitraK Vinny R T +6 位作者 Sivaraman P Narendra Reddy Chunyan Hu Krishna Venkatesh Vivek C S Nagaraju N Kathyayini N 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第1期56-62,共7页
Here we demonstrate the fabrication, electrochemical performance and application of an asymmetric supercapacitor (AS) device constructed with ss-Ni(OH)(2)/MWCNTs as positive electrode and KOH activated honeycomb-like ... Here we demonstrate the fabrication, electrochemical performance and application of an asymmetric supercapacitor (AS) device constructed with ss-Ni(OH)(2)/MWCNTs as positive electrode and KOH activated honeycomb-like porous carbon (K-PC) derived from banana fibers as negative electrode. Initially, the electrochemical performance of hydrothermally synthesized ss-Ni(OH)(2)/MWCNTs nanocomposite and K-PC was studied in a three-electrode system using 1 M KOH. These materials exhibited a specific capacitance (Cs) of 1327 Fig and 324 F/g respectively at a scan rate of 10 mV/s. Further, the AS device i.e., ss-Ni(OH)(2)/MWCNTs// K-PC in 1 M KOH solution, demonstrated a Cs of 156 F/g at scan rate of 10 mV/s in a broad cell voltage of 0-2.2 V. The device demonstrated a good rate capability by maintaining a Cs of 59 F/g even at high current density (25 A/g). The device also offered high energy density of 63 Wh/kg with maximum power density of 5.2 kW/kg. The AS device exhibited excellent cycle life with 100% capacitance retention at 5000th cycle at a high current density of 25 A/g. Two AS devices connected in series were employed for powering a pair of LEDs of different colors and also a mini fan. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved. 展开更多
关键词 Asymmetric supercapacitor device Activated porous carbon High energy density CYCLABILITY Power source
下载PDF
Ultrathin nanosheets of cobalt-nickel hydroxides hetero-structure via electrodeposition and precursor adjustment with excellent performance for supercapacitor 被引量:4
7
作者 Min Wei Qingsong Huang +2 位作者 Yanping Zhou Zhu Peng Wei Chu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第2期591-599,共9页
A homogeneous better-dispersed ultrathin nanosheets(ca. 5 nm) of cobalt-nickel layered double hydroxides(LDH) supported on nickel foam scaffold was synthesized using controllable electrodeposition approach for hig... A homogeneous better-dispersed ultrathin nanosheets(ca. 5 nm) of cobalt-nickel layered double hydroxides(LDH) supported on nickel foam scaffold was synthesized using controllable electrodeposition approach for high efficiency electrode materials of new supercapacitor. The morphology and electrochemical performances of the samples can be controlled by adjusting the precursor ratio, i.e., Ni(OAc)2/Co(NO3)2 molar ratio in the electrodeposition approach. With the increase of this molar ratio, the electrochemical performances give a volcano trend. When the optimized molar ratio is 0.64/0.36, the hybrid delivered a high specific capacitance of 1587.5 F g-1 at a current density of 0.5 A g-1, with good rate capability(1155 F g-1 was retained even at 10 A g-1) and a robust recycle stability(remaining 91.5% after 1000 cycles at 5 A g-1). The good performance could be attributed to the enlarged interlayer spacing, ultrathin nanosheets and synergistic effects between Co(OH)2 and Ni(OH)2. Furthermore, an asymmetric supercapacitor with a high energy density of 34.5 Wh kg-1 at 425 W kg-1 and excellent cycling stability of 85.4% after 5000 charge-discharge cycles at 2 A g-1 was fabricated. We believe that this fantabulous new electrode material would have encouraging applications in electrochemical energy storage and a wide readership. 展开更多
关键词 Ultrathin nanosheets CoNi layered double hydroxides (LDH) electrode Ni(OAc)2/Co(NO3)2 precursors High performance ELECTRODEPOSITION Asymmetric supercapacitor
下载PDF
Imidazole linker‐induced covalent triazine framework-ZIF hybrids for confined hollow carbon super‐heterostructures toward a long‐life supercapacitor 被引量:3
8
作者 Madagonda MVadiyar Ji‐Young Kim +1 位作者 Jee‐Hwan Bae Kyung‐Wan Nam 《Carbon Energy》 SCIE EI CAS CSCD 2023年第10期25-39,共15页
Carbon super-heterostructures with high nitrogen contents from the covalent hybrid precursors of covalent triazine frameworks(CTFs)and zeolitic imidazolic frameworks(ZIFs)are scarcely explored because of CTF's ord... Carbon super-heterostructures with high nitrogen contents from the covalent hybrid precursors of covalent triazine frameworks(CTFs)and zeolitic imidazolic frameworks(ZIFs)are scarcely explored because of CTF's ordered structure and toxic superacid that dissolves or destabilizes the metal nodes.To solve this problem,herein,we report a straightforward two-step pathway for the covalent hybridization of disordered CTF(d–CTF)–ZIF composites via preincorporation of an imidazole(IM)linker into ordered CTFs,followed by the imidazole-site-specific covalent growth of ZIFs.Direct carbonization of these synthesized d–CTF−IM−ZIF hybrids results in unique hollow carbon super-heterostructures with ultrahigh nitrogen content(>18.6%),high specific surface area(1663m^(2)g^(−1)),and beneficial trace metal(Co/Zn NPs)contents for promoting the redox pseudocapacitance.As proof of concept,the obtained carbon super-heterostructure(Co–Zn–NC_(SNH)–800)is used as a positive electrode in an asymmetric supercapacitor,demonstrating a remarkable energy density of 61Wh kg^(−1)and extraordinary cyclic stability of 97%retention after 30,000 cycles at the cell level.Our presynthetic modifications of CTF and their covalent hybridization with ZIF crystals pave the way toward new design strategies for synthesizing functional porous carbon materials for promising energy applications. 展开更多
关键词 asymmetric supercapacitor defective covalent triazine frameworks hollow carbon superheterostructures linker defect
下载PDF
3D Macro-Micro-Mesoporous FeC2O4/Graphene Hydrogel Electrode for High-Performance 2.5 V Aqueous Asymmetric Supercapacitors 被引量:2
9
作者 Wei-shuai Liu Yu-qing Song +2 位作者 Heng Wang Hong-fei Wang Li-feng Yan 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2018年第5期707-716,736,共11页
Distinguished from commonly used Fe2O3 and Fe3O4,a three-dimensional multilevel macromicro-mesoporous structure of FeC2O4/graphene composite has been prepared as binderfree electrode for supercapacitors.The as-prepare... Distinguished from commonly used Fe2O3 and Fe3O4,a three-dimensional multilevel macromicro-mesoporous structure of FeC2O4/graphene composite has been prepared as binderfree electrode for supercapacitors.The as-prepared materials are composed of macroporous graphene and microporous/mesoporous ferrous oxalate.Generally,the decomposition voltage of water is 1.23 V and the practical voltage window limit is about 2 V for asymmetric supercapacitors in aqueous electrolytes.When FeC2O4/rGO hydrogel was used as the negative electrode and a pure rGO hydrogel was used as the positive electrode,the asymmetrical supercapacitor voltage window raised to 1.7 V in KOH(1.0 mol/L)electrolyte and reached up to 2.5 V in a neutral aqueous Na2SO4(1.0 mol/L)electrolyte.Correspondingly it also exhibits a high performance with an energy density of 59.7 Wh/kg.By means of combining a metal oxide that owns micro-mesoporous structure with graphene,this work provides a new opportunity for preparing high-voltage aqueous asymmetric supercapacitors without addition of conductive agent and binder. 展开更多
关键词 Asymmetric supercapacitors High-voltage supercapacitors 3D Macro-micromesoporous FeC2O4/rGO hydrogel
下载PDF
Porous NiCo_2O_4 nanowires supported on carbon cloth for flexible asymmetric supercapacitor with high energy density 被引量:6
10
作者 Huifang Zhang Dengji Xiao +5 位作者 Qian Li Yuanyuan Ma Shuxia Yuan Lijing Xie Chengmeng Chen Chunxiang Lu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第1期195-202,共8页
Recently, binary metal oxides have been considerably researched for energy storage since it can provide higher electrical conductivity and electrochemical activity than single components. Besides, rational arrays stru... Recently, binary metal oxides have been considerably researched for energy storage since it can provide higher electrical conductivity and electrochemical activity than single components. Besides, rational arrays structure design can effectively enhance the utilization of active material. In this article, we synthesis a porous NiCo_2O_4 nanowires arrays, which were intimate contact with flexible carbon cloth(CC)by a facile hydrothermal reaction and calcination treatment. The rational array structures of NiCo_2O_4 facilitate the diffusion of electrolyte and effectively increase the utilization of active material. The asobtained NiCo_2O_4@CC electrode exhibits a high capacitance of 1183 mF cm^(-2) and an outstanding capacitance retention of 90.4% after 3000 cycles. Furthermore, a flexible asymmetric supercapacitor(ASC)using NiCo_2O_4@CC as positive electrode and activated carbon cloth(ACC) as negative electrode was fabricated, which delivers a large capacitance of 750 mF cm^(-2)(12.5 F cm^(-3)), a high energy density of 0.24 mWh cm^(-2)(3.91 mWh cm^(-3)), as well as excellent cycle stability under different bending states.These remarkable results suggest that as-assembled NiCo_2O_4@CC//ACC ASC is a promising candidate in flexible energy storage applications. 展开更多
关键词 All solid-stateNiCo2O4 nanowires Carbon cloth Activated carbon cloth Asymmetric supercapacitor
下载PDF
High energy density performance of hydrothermally produced hydrous ruthenium oxide/multiwalled carbon nanotubes composite: Design of an asymmetric supercapacitor with excellent cycle life 被引量:1
11
作者 K.Chaitra P.Sivaraman +3 位作者 R.T.Vinny Umananda M.Bhatta N.Nagaraju N.Kathyayini 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第4期627-635,共9页
Hydrous ruthenium oxide(h-Ru O) nanoparticles and its composite with multiwalled carbon nanotubes(h-Ru O/MWCNT) were synthesized by a simple hydrothermal method and proved to have potential application as hybrid super... Hydrous ruthenium oxide(h-Ru O) nanoparticles and its composite with multiwalled carbon nanotubes(h-Ru O/MWCNT) were synthesized by a simple hydrothermal method and proved to have potential application as hybrid supercapacitor material.The h-Ru Oand h-Ru O/MWCNT were characterized for their physico-chemical properties by PXRD,BET surface area,Raman,SEM-EDS and TEM techniques.The electrochemical performance of the materials were investigated,specific capacitance(Cs) of h-Ru Oand hRu O/MWCNT estimated by their cyclic voltammetric studies were found to be 604 and 1585 F/g respectively at a scan rate of 2 m V/s in the potential range 0–1.2 V.Further,this value was found to be nearly three times higher than that of pure h-Ru O.An asymmetric supercapacitor(AS) device was fabricated by employing h-Ru O/MWCNT as the positive electrode and activated carbon as the negative electrode.The device exhibited Cs of 61.8 F/g at a scan rate of 2 m V/s.Further,the device showed excellent long term stability for 20,000 cycles with 88% capacitance retention at a high current density of 25 A/g. 展开更多
关键词 Carbon nanotubes Hybrid composites Asymmetric supercapacitors Cycle life
下载PDF
One-Step Hydrothermal Synthesis of a CoTe@rGO Electrode Material for Supercapacitors 被引量:1
12
作者 Tianrui Wang Yupeng Su +3 位作者 Mi Xiao Meilian Zhao Tingwu Zhao Jianguo Shen 《Transactions of Tianjin University》 EI CAS 2022年第2期112-122,共11页
CoTe@reduced graphene oxide(CoTe@rGO)electrode materials for supercapacitors were prepared by a one-step hydrothermal method in this paper.Compared with that of pure CoTe,the electrochemical performance of CoTe@rGO wa... CoTe@reduced graphene oxide(CoTe@rGO)electrode materials for supercapacitors were prepared by a one-step hydrothermal method in this paper.Compared with that of pure CoTe,the electrochemical performance of CoTe@rGO was significantly improved.The results showed that the optimal CoTe@rGO electrode material has a remarkably high specific capacitance of 810.6 F/g at a current density of 1 A/g.At 5 A/g,the synthesized material retained 77.2%of its initial capacitance even after 5000 charge/discharge cycles,thereby demonstrating good cycling stability.Moreover,even at a high current density of 20 A/g,the composite electrode retained 79.0%of its specific capacitance at 1 A/g,thus confirming its excellent rate performance.An asymmetric supercapacitor(ASC)with a wider potential window and higher energy density was assembled by using 3 M KOH as the electrolyte,the CoTe@rGO electrode as the positive electrode,and active carbon as the negative electrode.The operating voltage of the supercapacitor could be increased to 1.6 V,and its specific capacitance could reach 112.6 F/g at 1 A/g.The specific capacitance retention rate of the fabricated supercapacitor after 5000 charge/discharge cycles at 5 A/g was 87.1%,which confirms its excellent cycling stability.In addition,the ASC revealed a high energy density of 40.04 W·h/kg at a power density of 799.91 W/kg and a high power density of 4004.93 W/kg at an energy density of 33.43 W·h/kg.These results collectively show that CoTe@rGO materials have broad application prospects. 展开更多
关键词 Asymmetric supercapacitors Cobalt telluride Reduced graphene oxide Electrode materials High performance
下载PDF
A rational preparation strategy of phase tuned MoO_(3) nanostructures for high-performance all-solid asymmetric supercapacitor 被引量:1
13
作者 M.Kundu D.Mondal +7 位作者 I.Mondal A.Baral P.Halder S.Biswas B.K.Paul N.Bose R.Basu S.Das 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期192-206,I0006,共16页
In this work,phase and morphology-tuned MoO_(3) nanostructures are synthesized through a novel modified co-precipitation method,and their electrochemical properties are investigated.For the first time,such a simple su... In this work,phase and morphology-tuned MoO_(3) nanostructures are synthesized through a novel modified co-precipitation method,and their electrochemical properties are investigated.For the first time,such a simple surfactant-assisted synthesis process aided by minor temperature variations is reported which results in phase transition of the nanoparticles from h-MoO_(3) nano-rods to a-MoO_(3) nano-flakes.The nanostructures thus developed are highly porous and crystalline with significantly large specific surface area as compared to previous literature.The theoretical bandgap energy of the optimized sample calculated using Perdew-Zunger local density approximation(LDA) is in good agreement with the experimental findings.An overall structural,morphological,and surface-behavioural analysis predicts the electrochemical superiority in 2D a-MoO_(3).The cyclic voltammetry and galvano-potentiometry measurements of 2D a-MoO_(3) in the potential window of-0.6 V to +0.2 V present the highest pseudosupercapacitive response with a maximum specific capacitance of 829 F g^(-1)at 2 A g^(-1)as compared to h-MoO_(3) (452 F g^(-1)) and h@a-MoO_(3) (783 F g^(-1)).Thus,the MoO_(3) 2D nanostructures synthesized through our novel synthesis technique display excellent specific capacitance as compared to previous reported data.Additionally,a-MoO_(3) exhibits a galvanostatic charging-discharging cyclic stability of about 91%after 2000 cycles,indicating that it can serve as an excellent electrode material for supercapacitors.A solid-state asymmetric supercapacitor device is successfully constructed using a-MoO_(3) which can light up 4 red LEDs for 10 s.The specific energy density of the device reaches a maximum value of 36.3 W h kg^(-1)at the power density of 50 W kg^(-1). 展开更多
关键词 MoO_(3)nanoparticles Asymmetric solid-state supercapacitor Electrochemical performance Low-temperature novel synthesis technique Density functional calculations
下载PDF
3D Printing of NiCoP/Ti3C2 MXene Architectures for Energy Storage Devices with High Areal and Volumetric Energy Density 被引量:6
14
作者 Lianghao Yu Weiping Li +3 位作者 Chaohui Wei Qifeng Yang Yuanlong Shao Jingyu Sun 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第10期300-312,共13页
Designing high-performance electrodes via 3D printing for advanced energy storage is appealing but remains challenging.In normal cases,light-weight carbonaceous materials harnessing excellent electrical conductivity h... Designing high-performance electrodes via 3D printing for advanced energy storage is appealing but remains challenging.In normal cases,light-weight carbonaceous materials harnessing excellent electrical conductivity have served as electrode candidates.However,they struggle with undermined areal and volumetric energy density of supercapacitor devices,thereby greatly impeding the practical applications.Herein,we demonstrate the in situ coupling of NiCoP bimetallic phosphide and Ti3C2 MXene to build up heavy NCPM electrodes affording tunable mass loading throughout 3D printing technology.The resolution of prints reaches 50μm and the thickness of device electrodes is ca.4 mm.Thus-printed electrode possessing robust open framework synergizes favorable capacitance of NiCoP and excellent conductivity of MXene,readily achieving a high areal and volumetric capacitance of 20 F cm^-2 and 137 F cm^-3 even at a high mass loading of^46.3 mg cm^-2.Accordingly,an asymmetric supercapacitor full cell assembled with 3D-printed NCPM as a positive electrode and 3D-printed activated carbon as a negative electrode harvests remarkable areal and volumetric energy density of 0.89 mWh cm^-2 and 2.2 mWh cm^-3,outperforming the most of state-of-the-art carbon-based supercapacitors.The present work is anticipated to offer a viable solution toward the customized construction of multifunctional architectures via 3D printing for high-energy-density energy storage systems. 展开更多
关键词 3D printing NiCoP/MXene Asymmetric supercapacitor Energy density Tailorable loading
下载PDF
Few-layer Ti3C2Tx MXene delaminated via flash freezing for high-rate electrochemical capacitive energy storage 被引量:2
15
作者 Xianli Wang Liubing Dong +6 位作者 Wenbao Liu Yongfeng Huang Xuechao Pu Jinjie Wang Feiyu Kang Jia Lia Chengjun Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第9期233-240,I0007,共9页
Few-layer Ti3C2Tx MXene is synthesized from multi-layered Ti3C2Tx via a flash freezing-assisted delamination process.During the flash freezing process,the water molecules in the interlayers of multi-layered MXene are ... Few-layer Ti3C2Tx MXene is synthesized from multi-layered Ti3C2Tx via a flash freezing-assisted delamination process.During the flash freezing process,the water molecules in the interlayers of multi-layered MXene are induced to rearrange and produce volume expansion,thus notably expand the MXenes’interlayer distance to form few-layer MXene.The synthesized few-layer Ti3C2Tx MXene nanosheets display a very small thickness(less than 5 Ti3C2 atom-layers)and expanded interlayer spacing.Consequently,the few-layer Ti3C2Tx exhibits enhanced capacitance(255 F g^-1 vs.177 F g^-1 for the multi-layered Ti3C2Tx)and significantly optimized rate capability(150 F g^-1 at 200 mV s^-1 vs.25 F g^-1 for the multi-layered Ti3C2Tx),because redox-active sites in the few-layer MXene are easily accessible to electrolyte ions.Moreover,an asymmetric supercapacitor is constructed using the few-layer Ti3C2Tx negative electrode and an activated carbon fiber positive electrode.The asymmetric supercapacitor presents a high energy density of 17.9 Wh kg^-1 and a high power density of 14 kW kg^-1,which is inseparable from its wide voltage window of 1.4 V and the good rate performance of the few-layer Ti3C2Tx MXene electrode.Overall,the flash freezing-assist delamination provides an effective and environmental-friendly strategy to synthesize few-layer MXene materials for high-rate electrochemical energy storage. 展开更多
关键词 Ti3C2Tx MXene PSEUDOCAPACITANCE Activated carbon fiber Asymmetric supercapacitor Flash freezing
下载PDF
Newly Design Porous/Sponge Red Phosphorus@Graphene and Highly Conductive Ni2P Electrode for Asymmetric Solid State Supercapacitive Device With Excellent Performance 被引量:3
16
作者 Nazish Parveen Muhammad Hilal Jeong In Han 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第2期169-184,共16页
Supercapacitors have attracted much attention in the field of electrochemical energy storage.However,material preparation,stability,performance as well as power density limit their applications in many fields.Herein,a... Supercapacitors have attracted much attention in the field of electrochemical energy storage.However,material preparation,stability,performance as well as power density limit their applications in many fields.Herein,a sponge-like red phosphorus@graphene(rP@rGO)negative electrode and a Ni2P positive electrode were prepared using a simple one-step method.Both electrodes showed excellent performances(294 F g^−1 and 1526.6 F g^−1 for rP@rGO and Ni2P,respectively),which seem to be the highest among all rP@rGO-and Ni2P-based electrodes reported so far.The asymmetric solid-state supercapacitor was assembled by sandwiching a gel electrolyte-soaked cellulose paper between rP@rGO and Ni2P as the negative and positive electrodes.Compared to other asymmetric devices,the device,which attained a high operating window of up to 1.6 V,showed high energy and power density values of 41.66 and 1200 W kg−1,respectively.It also has an excellent cyclic stability up to 88%after various consecutive charge/discharge tests.Additionally,the device could power commercial light emitting diodes and fans for 30 s.So,the ease of the synthesis method and excellent performance of the prepared electrode materials mat have significant potential for energy storage applications. 展开更多
关键词 Sponge red phosphorus Porous graphene NI2P ELECTRODE Asymmetric solid-state supercapacitor
下载PDF
Simple synthesis of novel phosphate electrode materials with unique microstructure and enhanced supercapacitive properties 被引量:1
17
作者 Maocheng Liu Jiajia Li +1 位作者 Wei Han Long Kang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第4期601-608,共8页
Flower-like Ni3P2O8 and flower-like Fe3P2O8 center dot 8H(2)O have been successfully synthesized by a simple chemical precipitation method. X-ray diffraction (XRD) patterns reveal an amorphous phase formation of nicke... Flower-like Ni3P2O8 and flower-like Fe3P2O8 center dot 8H(2)O have been successfully synthesized by a simple chemical precipitation method. X-ray diffraction (XRD) patterns reveal an amorphous phase formation of nickel phosphate (Ni3P2O8) and pure monoclinic phase of Fe3P2O8 center dot 8H(2)O. The novel flower-like Ni3P2O8 and flower-like Fe3P2O8 center dot 8H(2)O when used for supercapacitor electrode materials exhibit a high specific capacitance (C-m) of 1464 F/g and 200 F/g at a current density of 0.5 A/g, respectively. Eventually, an asymmetric supercapacitor is fabricated using Ni3P2O8 as positive electrode and Fe3P2O8 center dot 8H(2)O as negative electrode. A high specific capacitance of 94 F/g is achieved in the high-voltage region of 0 similar to 1.6V, and a large energy density of 32.6 Wh/kg is delivered at power density of 420 W/kg. The findings demonstrate the important and great potential of developing metal phosphate based materials for supercapacitors. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved. 展开更多
关键词 Nickel phosphate Ferrous phosphate Asymmetric supercapacitor PSEUDOCAPACITANCE
下载PDF
Facile synthesis of colloidal nitrogen-doped titanium carbide sheets with enhanced electrochemical performance 被引量:2
18
作者 Tianlun Qiu Guohui Li +3 位作者 Yuanlong Shao Kun Jiang Fangfang Zhao Fengxia Geng 《Carbon Energy》 CAS 2020年第4期624-634,共11页
Heteroatom nitrogen doping in two-dimensional transition metal carbides,known as MXenes,has been considered as a promising strategy for modulating their electronic structure and electrochemical reactivity.While highte... Heteroatom nitrogen doping in two-dimensional transition metal carbides,known as MXenes,has been considered as a promising strategy for modulating their electronic structure and electrochemical reactivity.While hightemperature annealing in the presence of a nitrogen source has been one popular method to introduce nitrogen,annealing exfoliated multilayered MXenes typically brings about incomplete delamination and the treatment of delaminated monolayer MXenes often leads to irreversible restacking.Here,starting from the typical carbide precursor,we developed an aqueous colloid containing monolayered nitrogen-doped titanium carbide sheets with excellent dispersity and stability.This achievement is critically dependent on the retaining of the hydrophilic surface of host layers during annealing treatment.The successful realization of nitrogen doping into individual MXene monolayers resulted in enhanced electrical conductivity and redox reactivity,for which the sample exhibited excellent capacitive electrochemical performance(586 F/g at a scan rate of 5mV/s)and cycling stability(capacitance retention of 96.2%after 104 cycles at 5 A/g).This paper presents a feasible and simple strategy for designing nitrogen-doped MXenes colloid,the realization of which promises its facile uses in liquid phase engineering techniques toward versatile applications. 展开更多
关键词 asymmetric supercapacitor MXenes nitrogen doping two-dimensional materials
下载PDF
Liquid phase synthesis of dendritic nickel carbide alloy with high conductivity for advanced energy storage
19
作者 Mao-Cheng Liu Yu-Mei Hu +2 位作者 Wen-Ya An Ling-Bin Kong Long Kang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第4期750-756,共7页
Alloy materials have attracted increasing attentions because they possess superior electrical conductivity which can contribute to excellent electrochemical performance. Herein a dendritic Ni;C alloy material has been... Alloy materials have attracted increasing attentions because they possess superior electrical conductivity which can contribute to excellent electrochemical performance. Herein a dendritic Ni;C alloy material has been prepared by the pyrolysis of nickel acetylacetonate employing oleylamine as a reductant and 1-octadecene or octadecane as the solvent. The current–voltage curves indicating that the electrical conductivity of Ni;C is higher than that of nickel oxide. Electrochemical testing indicates that a high specific capacity of 390 C/g is found in alkaline electrolyte at 0.5 A/g, and deliver excellent rate characteristic as well as cycle life. The excellent electrochemical performance may be attributed to its high electrical conductivity and dendritic nanostructure that can promote diffusion of electrolyte ions. In addition, the AC//Ni;C asymmetric supercapacitor has been assembled at a cell voltages between 0 and 1.6 V, achieving a maximum energy density of 37 Wh/kg(at a power density of 0.3995 k W/kg), and this manifests that the Ni;C alloy is a promising electrode material for electrochemical energy storage. 展开更多
关键词 Nickel carbide alloy DENDRITIC Electrical conductivity Asymmetric supercapacitor
下载PDF
Manganese doping to boost the capacitance performance of hierarchical Co_(9)S_(8)@Co(OH)_(2) nanosheet arrays
20
作者 Lingxia Zheng Weiqing Ye +3 位作者 Pengju Yang Jianlan Song Xiaowei Shi Huajun Zheng 《Green Energy & Environment》 SCIE EI CSCD 2022年第6期1289-1297,共9页
Transition metal sulfides(TMSs)have been regarded as greatly promising electrode materials for supercapacitors because of abundant redox electroactive sites and outstanding conductivity.Herein,we report a self-support... Transition metal sulfides(TMSs)have been regarded as greatly promising electrode materials for supercapacitors because of abundant redox electroactive sites and outstanding conductivity.Herein,we report a self-supported hierarchical Mn doped Co_(9)S_(8)@Co(OH)_(2) nanosheet arrays on nickel foam(NF)substrate by a one-step metal–organic-framework(MOF)engaged approach and a subsequent sulfurization process.Experimental results reveal that the introduction of manganese endows improved electric conductivity,enlarged electrochemical specific surface area,adjusted electronic structure of Co_(9)S_(8)@Co(OH)_(2) and enhanced interfacial activities as well as facilitated reaction kinetics of electrodes.The optimal Mn doped Co_(9)S_(8)@Co(OH)_(2) electrode exhibits an ultrahigh specific capacitance of 3745 F g^(-1) at 1 A g^(-1)(5.618 F cm^(-2) at 1.5 mA cm^(-2))and sustains 1710 F g^(-1) at 30 A g^(-1)(2.565 F cm^(-2) at 45 mA cm^(-2)),surpassing most reported values on TMSs.Moreover,a battery-type asymmetric supercapacitor(ASC)device is constructed,which delivers high energy density of 50.2 Wh kg^(-1) at power density of 800 W kg^(-1),and outstanding long-term cycling stability(94%capacitance retention after 8000 cycles).The encouraging results might offer an effective strategy to optimize the TMSs for energy-storage devices. 展开更多
关键词 Mn doped Co_(9)S_(8)@Co(OH)_(2) MOF High capacitance Asymmetric supercapacitor
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部