With its complex nonlinear dynamic behavior,the tristable system has shown excellent performance in areas such as energy harvesting and vibration suppression,and has attracted a lot of attention.In this paper,an asymm...With its complex nonlinear dynamic behavior,the tristable system has shown excellent performance in areas such as energy harvesting and vibration suppression,and has attracted a lot of attention.In this paper,an asymmetric tristable design is proposed to improve the vibration suppression efficiency of nonlinear energy sinks(NESs)for the first time.The proposed asymmetric tristable NES(ATNES)is composed of a pair of oblique springs and a vertical spring.Then,the three stable states,symmetric and asymmetric,can be achieved by the adjustment of the distance and stiffness asymmetry of the oblique springs.The governing equations of a linear oscillator(LO)coupled with the ATNES are derived.The approximate analytical solution to the coupled system is obtained by the harmonic balance method(HBM)and verified numerically.The vibration suppression efficiency of three types of ATNES is compared.The results show that the asymmetric design can improve the efficiency of vibration reduction through comparing the chaotic motion of the NES oscillator between asymmetric steady states.In addition,compared with the symmetrical tristable NES(TNES),the ATNES can effectively control smaller structural vibrations.In other words,the ATNES can effectively solve the threshold problem of TNES failure to weak excitation.Therefore,this paper reveals the vibration reduction mechanism of the ATNES,and provides a pathway to expand the effective excitation amplitude range of the NES.展开更多
As an important factor that directly affects agricultural production, the social economy, and policy implementation,observed changes in dry/wet conditions have become a matter of widespread concern. However, previous ...As an important factor that directly affects agricultural production, the social economy, and policy implementation,observed changes in dry/wet conditions have become a matter of widespread concern. However, previous research has mainly focused on the long-term linear changes of dry/wet conditions, while the detection and evolution of the non-linear trends related to dry/wet changes have received less attention. The non-linear trends of the annual aridity index, obtained by the Ensemble Empirical Mode Decomposition(EEMD) method, reveal that changes in dry/wet conditions in China are asymmetric and can be characterized by contrasting features in both time and space in China. Spatially, most areas in western China have experienced transitions from drying to wetting, while opposite changes have occurred in most areas of eastern China. Temporally, the transitions occurred earlier in western China compared to eastern China. Research into the asymmetric spatial characteristics of dry/wet conditions compensates for the inadequacies of previous studies, which focused solely on temporal evolution;at the same time, it remedies the inadequacies of traditional research on linear trends over centennial timescales. Analyzing the non-linear trend also provides for a more comprehensive understanding of the drying/wetting changes in China.展开更多
The demand for adopting neural networks in resource-constrained embedded devices is continuously increasing.Quantization is one of the most promising solutions to reduce computational cost and memory storage on embedd...The demand for adopting neural networks in resource-constrained embedded devices is continuously increasing.Quantization is one of the most promising solutions to reduce computational cost and memory storage on embedded devices.In order to reduce the complexity and overhead of deploying neural networks on Integeronly hardware,most current quantization methods use a symmetric quantization mapping strategy to quantize a floating-point neural network into an integer network.However,although symmetric quantization has the advantage of easier implementation,it is sub-optimal for cases where the range could be skewed and not symmetric.This often comes at the cost of lower accuracy.This paper proposed an activation redistribution-based hybrid asymmetric quantizationmethod for neural networks.The proposedmethod takes data distribution into consideration and can resolve the contradiction between the quantization accuracy and the ease of implementation,balance the trade-off between clipping range and quantization resolution,and thus improve the accuracy of the quantized neural network.The experimental results indicate that the accuracy of the proposed method is 2.02%and 5.52%higher than the traditional symmetric quantization method for classification and detection tasks,respectively.The proposed method paves the way for computationally intensive neural network models to be deployed on devices with limited computing resources.Codes will be available on https://github.com/ycjcy/Hybrid-Asymmetric-Quantization.展开更多
With the rapid development of portable electronics and electric road vehicles,high-energy-density batteries have been becoming front-burner issues.Traditionally,homogeneous electrolyte cannot simultaneously meet diame...With the rapid development of portable electronics and electric road vehicles,high-energy-density batteries have been becoming front-burner issues.Traditionally,homogeneous electrolyte cannot simultaneously meet diametrically opposed demands of high-potential cathode and low-potential anode,which are essential for high-voltage batteries.Meanwhile,homogeneous electrolyte is difficult to achieve bi-or multi-functions to meet different requirements of electrodes.In comparison,the asymmetric electrolyte with bi-or multi-layer disparate components can satisfy distinct requirements by playing different roles of each electrolyte layer and meanwhile compensates weakness of individual electrolyte.Consequently,the asymmetric electrolyte can not only suppress by-product sedimentation and continuous electrolyte decomposition at the anode while preserving active substances at the cathode for high-voltage batteries with long cyclic lifespan.In this review,we comprehensively divide asymmetric electrolytes into three categories:decoupled liquid-state electrolytes,bi-phase solid/liquid electrolytes and decoupled asymmetric solid-state electrolytes.The design principles,reaction mechanism and mutual compatibility are also studied,respectively.Finally,we provide a comprehensive vision for the simplification of structure to reduce costs and increase device energy density,and the optimization of solvation structure at anolyte/catholyte interface to realize fast ion transport kinetics.展开更多
This study investigates the dynamical behaviors of nearest neighbor asymmetric coupled systems in a confined space.First, the study derivative analytical stability and synchronization conditions for the asymmetrically...This study investigates the dynamical behaviors of nearest neighbor asymmetric coupled systems in a confined space.First, the study derivative analytical stability and synchronization conditions for the asymmetrically coupled system in an unconfined space, which are then validated through numerical simulations. Simulation results show that asymmetric coupling has a significant impact on synchronization conditions. Moreover, it is observed that irrespective of whether the system is confined, an increase in coupling asymmetry leads to a hastened synchronization pace. Additionally, the study examines the effects of boundaries on the system's collective behaviors via numerical experiments. The presence of boundaries ensures the system's stability and synchronization, and reducing these boundaries can expedite the synchronization process and amplify its effects. Finally, the study reveals that the system's output amplitude exhibits stochastic resonance as the confined boundary size increases.展开更多
We have applied strong coupling unitary transformation method combined with Bose–Einstein statistical law to investigate magnetopolaron energy level temperature effects in halogen ion crystal quantum wells.The obtain...We have applied strong coupling unitary transformation method combined with Bose–Einstein statistical law to investigate magnetopolaron energy level temperature effects in halogen ion crystal quantum wells.The obtained results showed that under magnetic field effect,magnetopolaron quasiparticle was formed through the interaction of electrons and surrounding phonons.At the same time,magnetopolaron was influenced by phonon temperature statistical law and important energy level shifts down and binding energy increases.This revealed that lattice temperature and magnetic field could easily affect magnetopolaron and the above results could play key roles in exploring thermoelectric conversion and conductivity of crystal materials.展开更多
Global climate change is characterized by asymmetric warming,i.e.,greater temperature increases in winter,spring,and nighttime than in summer,autumn,and daytime.Field experiments were conducted using four wheat cultiv...Global climate change is characterized by asymmetric warming,i.e.,greater temperature increases in winter,spring,and nighttime than in summer,autumn,and daytime.Field experiments were conducted using four wheat cultivars,namely‘Yangmai 18’(YM18),‘Sumai 188’(SM188),‘Yannong 19’(YN19),and‘Annong 0711’(AN0711),in the two growing seasons of 2019-2020 and 2020-2021,with passive night warming during different periods in the early growth stage.The treatments were night warming during the tillering-jointing(NW_(T-J)),jointing-booting(NWJ-B),and booting-anthesis(NWB-A)stages,with ambient temperature(NN)as the control.The effects of night warming during different stages on wheat yield formation were investigated by determining the characteristics of dry matter accumulation and translocation,as well as sucrose and starch accumulation in wheat grains.The wheat yields of all four cultivars were significantly higher in NW_(T-J)than in NN in the 2-year experiment.The yield increases of semi-winter cultivars YN19 and AN0711 were greater than those of spring cultivars YM18 and SM188.Treatment NW_(T-J)increased wheat yield mainly by increasing the 1,000-grain weight and the number of fertile spikelets,and it increased dry matter accumulation in various organs of wheat at the anthesis and maturity stages by increasing the growth rate at the vegetative growth stage.The flag leaf and spike showed the largest increases in dry matter accumulation.NW_(T-J)also increased the grain sucrose and starch contents in the early and middle grain-filling stages,promoting yield formation.Overall,night warming between the tillering and jointing stages increased the pre-anthesis growth rate,and thus,wheat dry matter production,which contributed to an increase in wheat yield.展开更多
α-Diimide catalysts have attracted widespread attention due to their unique chain walking characteristics.A series ofα-diimide nickel/palladium catalysts with different electronic effects and steric hindrances were ...α-Diimide catalysts have attracted widespread attention due to their unique chain walking characteristics.A series ofα-diimide nickel/palladium catalysts with different electronic effects and steric hindrances were designed and synthesized for olefin polymerization.In this work,we synthesized a series of asymmetricα-diimide nickel complexes with different steric hindrances and used them for ethylene polymerization.These nickel catalysts have high ethylene polymerization activity,up to 6.51×10^(6)g·mol^(−1)·h^(−1),and the prepared polyethylene has a moderate melting point and high molecular weight(up to 38.2×10^(4)g·mol^(−1)),with a branching density distribution between 7 and 94 branches per 1000 carbons.More importantly,the polyethylene prepared by these catalysts exhibits excellent tensile properties,with strain and stress reaching 800%and 30 MPa,respectively.展开更多
Hybridization plays a significant role in biological evolution. However, it is not clear whether ecological contingency differentially influences likelihood of hybridization, particularly at ecological margins where p...Hybridization plays a significant role in biological evolution. However, it is not clear whether ecological contingency differentially influences likelihood of hybridization, particularly at ecological margins where parental species may exhibit reduced fitnesses. Moreover, it is unknown whether future ecosystem change will increase the prevalence of hybridization. Ficus heterostyla and F. squamosa are closely related species co-distributed from southern Thailand to southwest China where hybridization, yielding viable seeds, has been documented. As a robust test of ecological factors driving hybridization, we investigated spatial hybridization signatures based on nuclear microsatellites from extensive population sampling across a widespread contact range. Both species showed high population differentiation and strong patterns of isolation by distance. Admixture estimates exposed asymmetric interspecific gene flow.Signatures of hybridization increase significantly towards higher latitude zones, peaking at the northern climatic margins. Geographic variation in reproductive phenology combined with ecologically challenging marginal habitats may promote this phenomenon. Our work is a first systematic evaluation of such patterns in a comprehensive, latitudinally-based clinal context, and indicates that tendency to hybridize appears strongly influenced by environmental conditions. Moreover, that future climate change scenarios will likely alter and possibly augment cases of hybridization at ecosystem scales.展开更多
We experimentally and theoretically present a paradigm for the accurate bilayer design of gradient metasurfaces for wave beam manipulation,producing an extremely asymmetric splitting effect by simply tailoring the int...We experimentally and theoretically present a paradigm for the accurate bilayer design of gradient metasurfaces for wave beam manipulation,producing an extremely asymmetric splitting effect by simply tailoring the interlayer size.This concept arises from anomalous diffraction in phase gradient metasurfaces and the precise combination of the phase gradient in bilayer metasurfaces.Ensured by different diffraction routes in momentum space for incident beams from opposite directions,extremely asymmetric acoustic beam splitting can be generated in a robust way,as demonstrated in experiments through a designed bilayer system.Our work provides a novel approach and feasible platform for designing tunable devices to control wave propagation.展开更多
The paper addresses the decentralized optimal control and stabilization problems for interconnected systems subject to asymmetric information.Compared with previous work,a closed-loop optimal solution to the control p...The paper addresses the decentralized optimal control and stabilization problems for interconnected systems subject to asymmetric information.Compared with previous work,a closed-loop optimal solution to the control problem and sufficient and necessary conditions for the stabilization problem of the interconnected systems are given for the first time.The main challenge lies in three aspects:Firstly,the asymmetric information results in coupling between control and estimation and failure of the separation principle.Secondly,two extra unknown variables are generated by asymmetric information(different information filtration)when solving forward-backward stochastic difference equations.Thirdly,the existence of additive noise makes the study of mean-square boundedness an obstacle.The adopted technique is proving and assuming the linear form of controllers and establishing the equivalence between the two systems with and without additive noise.A dual-motor parallel drive system is presented to demonstrate the validity of the proposed algorithm.展开更多
Rosin,a renewable and abundant resource,has been extensively processed and chemically modified to endow it with special properties,especially in the surfactant industry.In this study,four rosin-based quaternary ammoni...Rosin,a renewable and abundant resource,has been extensively processed and chemically modified to endow it with special properties,especially in the surfactant industry.In this study,four rosin-based quaternary ammonium asymmetric gemini surfactants(RGS-2-n)with different alkyl chain lengths(n=12,14,16,18)were synthesized using a simple two-step method based on dehydroabietylamine as the raw material.The feasibility of these surfactants for cleaning purposes was comprehensively evaluated,suggesting that the surfactants own high surface activity and good cleaning performance.Furthermore,by successfully introducing the amine group of dehydroabietylamine into the hydrophilic group of the surfactants,we avoided its potential harm to the environment and water pollution.Density functional theory proves rosin-based gemini surfactants with asymmetric structure can further improve cleaning efficiency.Overall,our findings suggests that RGS-2-n surfactants are promising and sustainable candidates for cleaning electric plates,and provide new opportunities for rosin application in the electric industry.展开更多
In the generalized continuum mechanics(GCM)theory framework,asymmetric wave equations encompass the characteristic scale parameters of the medium,accounting for microstructure interactions.This study integrates two th...In the generalized continuum mechanics(GCM)theory framework,asymmetric wave equations encompass the characteristic scale parameters of the medium,accounting for microstructure interactions.This study integrates two theoretical branches of the GCM,the modified couple stress theory(M-CST)and the one-parameter second-strain-gradient theory,to form a novel asymmetric wave equation in a unified framework.Numerical modeling of the asymmetric wave equation in a unified framework accurately describes subsurface structures with vital implications for subsequent seismic wave inversion and imaging endeavors.However,employing finite-difference(FD)methods for numerical modeling may introduce numerical dispersion,adversely affecting the accuracy of numerical modeling.The design of an optimal FD operator is crucial for enhancing the accuracy of numerical modeling and emphasizing the scale effects.Therefore,this study devises a hybrid scheme called the dung beetle optimization(DBO)algorithm with a simulated annealing(SA)algorithm,denoted as the SA-based hybrid DBO(SDBO)algorithm.An FD operator optimization method under the SDBO algorithm was developed and applied to the numerical modeling of asymmetric wave equations in a unified framework.Integrating the DBO and SA algorithms mitigates the risk of convergence to a local extreme.The numerical dispersion outcomes underscore that the proposed SDBO algorithm yields FD operators with precision errors constrained to 0.5‱while encompassing a broader spectrum coverage.This result confirms the efficacy of the SDBO algorithm.Ultimately,the numerical modeling results demonstrate that the new FD method based on the SDBO algorithm effectively suppresses numerical dispersion and enhances the accuracy of elastic wave numerical modeling,thereby accentuating scale effects.This result is significant for extracting wavefield perturbations induced by complex microstructures in the medium and the analysis of scale effects.展开更多
While the interaction between information and disease in static networks has been extensively investigated,many studies have ignored the characteristics of network evolution.In this study,we construct a new two-layer ...While the interaction between information and disease in static networks has been extensively investigated,many studies have ignored the characteristics of network evolution.In this study,we construct a new two-layer coupling model to explore the interactions between information and disease.The upper layer describes the diffusion of disease-related information,and the lower layer represents the disease transmission.We then use power-law distributions to examine the influence of asymmetric activity levels on dynamic propagation,revealing a mapping relationship characterizing the interconnected propagation of information and diseases among partial nodes within the network.Subsequently,we derive the disease outbreak threshold by using the microscopic Markov-chain approach(MMCA).Finally,we perform extensive Monte Carlo(MC)numerical simulations to verify the accuracy of our theoretical results.Our findings indicate that the activity levels of individuals in the disease transmission layer have a more significant influence on disease transmission compared with the individual activity levels in the information diffusion layer.Moreover,reducing the damping factor can delay disease outbreaks and suppress disease transmission,while improving individual quarantine measures can contribute positively to disease control.This study provides valuable insights into policymakers for developing outbreak prevention and control strategies.展开更多
Salter's duck,an asymmetrical wave energy converter(WEC)device,showed high efficiency in extracting energy from 2D regular waves in the past;yet,challenges remain for fluctuating wave conditions.These can potentia...Salter's duck,an asymmetrical wave energy converter(WEC)device,showed high efficiency in extracting energy from 2D regular waves in the past;yet,challenges remain for fluctuating wave conditions.These can potentially be addressed by adopting a negative stiffness mechanism(NSM)in WEC devices to enhance system efficiency,even in highly nonlinear and steep 3D waves.A weakly nonlinear model was developed which incorporated a nonlinear restoring moment and NSM into the linear formulations and was applied to an asymmetric WEC using a time domain potential flow model.The model was initially validated by comparing it with published experimental and numerical computational fluid dynamics results.The current results were in good agreement with the published results.It was found that the energy extraction increased in the range of 6%to 17%during the evaluation of the effectiveness of the NSM in regular waves.Under irregular wave conditions,specifically at the design wave conditions for the selected test site,the energy extraction increased by 2.4%,with annual energy production increments of approximately 0.8MWh.The findings highlight the potential of NSM in enhancing the performance of asymmetric WEC devices,indicating more efficient energy extraction under various wave conditions.展开更多
Zn based electrochemical energy storage systems(EES)have attracted tremendous interests owing to their low cost and high intrinsic safety.Nevertheless,the uncontrolled growth of Zn dendrites and the side reactions of ...Zn based electrochemical energy storage systems(EES)have attracted tremendous interests owing to their low cost and high intrinsic safety.Nevertheless,the uncontrolled growth of Zn dendrites and the side reactions of Zn metal anodes(ZMAs)severely restrict their applications.To address these issues,we design the asymmetric Zn-N_(4) atomic sites embedded hollow fibers(AS-IHF)as the flexible host for stable ZMAs.Through introducing different nitrogen resources in the synthesis,two kinds of coordination,i,e.Zn-N(pyridinic)and Zn-N(pyrrolic),are introduced in the Zn-N_(4) atomic module synchronously.The asymmetric Zn-N_(4) module with regulated micro-environment facilitates the superior zincophilic features and promotes the Zn adsorption.Meanwhile,the highly porous structure of the hollow fiber effectively reduces local current density,homogenize Zn ion flux,and alleviate structure stress.All the advantages endow the high efficiency and good stability for Zn plating/stripping.Both theoretical and experimental results demonstrate the high reversibility,low nucleation overpotential,and dendritefree behavior of the AS-IHF@Zn anode,which afford the high stability in high-rate and long-term cycling.Moreover,the solid-state Zn-ion hybrid capacitor(ZIHC)based on AS-IHF@Zn anode shows the high flexibility,reliability,and superior long-term cycling capability in a wide-range of temperatures(-20-25℃).Therefore,the present work not only gives a new strategy for modulating local environments of single atomic sites,but also propels the development of flexible power sources for diverse electronics.展开更多
The construction of coal mines often encounters deep composite soft rock roadways,which is characterized by significant deformation and poor stability.To deeply study the failure mechanism and large deformation challe...The construction of coal mines often encounters deep composite soft rock roadways,which is characterized by significant deformation and poor stability.To deeply study the failure mechanism and large deformation challenges of a composite strata roadway in deep and soft rock masses,a numerical model of 3DEC tetrahedral blocks was established based on the method of rock quality designation(RQD).The results showed that original support cannot prevent asymmetric failure and large deformation due to the adverse geological environment and unsuitable support design.According to the failure characteristics,a coupling support of“NPR bolt/cable+mesh+shotcrete+steel pipe”was proposed to control the stability of the surrounding rock.The excellent mechanical properties of large deformation(approximately 400 mm)and high constant resistance force(bolt with 180 k N;cable with 350 k N)were evaluated by the tensile tests.The numerical results showed that the maximum deformation was minimized to 243 mm,and the bearing capacity of the surrounding rock of the roadway was enhanced.The field test results showed that the maximum deformation of the surrounding rock was 210 mm,and the forces of the NPR bolt and cable were stable at approximately 180 k N and 350 k N,respectively.This demonstrated the effectiveness of the coupling support with the NPR bolt and cable,which could be a guiding significance for the safety control of large deformation and failure in deep composite soft rock roadways.展开更多
The neuron model has been widely employed in neural-morphic computing systems and chaotic circuits.This study aims to develop a novel circuit simulation of a three-neuron Hopfield neural network(HNN)with coupled hyper...The neuron model has been widely employed in neural-morphic computing systems and chaotic circuits.This study aims to develop a novel circuit simulation of a three-neuron Hopfield neural network(HNN)with coupled hyperbolic memristors through the modification of a single coupling connection weight.The bistable mode of the hyperbolic memristive HNN(mHNN),characterized by the coexistence of asymmetric chaos and periodic attractors,is effectively demonstrated through the utilization of conventional nonlinear analysis techniques.These techniques include bifurcation diagrams,two-parameter maximum Lyapunov exponent plots,local attractor basins,and phase trajectory diagrams.Moreover,an encryption technique for color images is devised by leveraging the mHNN model and asymmetric structural attractors.This method demonstrates significant benefits in correlation,information entropy,and resistance to differential attacks,providing strong evidence for its effectiveness in encryption.Additionally,an improved modular circuit design method is employed to create the analog equivalent circuit of the memristive HNN.The correctness of the circuit design is confirmed through Multisim simulations,which align with numerical simulations conducted in Matlab.展开更多
Single-atom materials have demonstrated attractive physicochemical characteristics.However,understanding the relationships between the coordination environment of single atoms and their properties at the atomic level ...Single-atom materials have demonstrated attractive physicochemical characteristics.However,understanding the relationships between the coordination environment of single atoms and their properties at the atomic level remains a considerable challenge.Herein,a facile waterassisted carbonization approach is developed to fabricate well-defined asymmetrically coordinated Co–N_(4)–O sites on biomass-derived carbon nanofiber(Co–N_(4)–O/NCF)for electromagnetic wave(EMW)absorption.In such nanofiber,one atomically dispersed Co site is coordinated with four N atoms in the graphene basal plane and one oxygen atom in the axial direction.In-depth experimental and theoretical studies reveal that the axial Co–O coordination breaks the charge distribution symmetry in the planar porphyrin-like Co–N_(4) structure,leading to significantly enhanced dielectric polarization loss relevant to the planar Co–N_(4) sites.Importantly,the film based on Co–N_(4)–O/NCF exhibits light weight,flexibility,excellent mechanical properties,great thermal insulating feature,and excellent EMW absorption with a reflection loss of−45.82 dB along with an effective absorption bandwidth of 4.8 GHz.The findings of this work offer insight into the relationships between the single-atom coordination environment and the dielectric performance,and the proposed strategy can be extended toward the engineering of asymmetrically coordinated single atoms for various applications.展开更多
The Riemann–Hilbert approach is demonstrated to investigate the defocusing Lakshmanan–Porsezian–Daniel equation under fully asymmetric nonzero boundary conditions.In contrast to the symmetry case,this paper focuses...The Riemann–Hilbert approach is demonstrated to investigate the defocusing Lakshmanan–Porsezian–Daniel equation under fully asymmetric nonzero boundary conditions.In contrast to the symmetry case,this paper focuses on the branch points related to the scattering problem rather than using the Riemann surfaces.For the direct problem,we analyze the Jost solution of lax pairs and some properties of scattering matrix,including two kinds of symmetries.The inverse problem at branch points can be presented,corresponding to the associated Riemann–Hilbert.Moreover,we investigate the time evolution problem and estimate the value of solving the solutions by Jost function.For the inverse problem,we construct it as a Riemann–Hilbert problem and formulate the reconstruction formula for the defocusing Lakshmanan–Porsezian–Daniel equation.The solutions of the Riemann–Hilbert problem can be constructed by estimating the solutions.Finally,we work out the solutions under fully asymmetric nonzero boundary conditions precisely via utilizing the Sokhotski–Plemelj formula and the square of the negative column transformation with the assistance of Riemann surfaces.These results are valuable for understanding physical phenomena and developing further applications of optical problems.展开更多
基金Project supported by the National Science Fund for Distinguished Young Scholars of China(No.12025204)the National Natural Science Foundation of China(No.12202038)。
文摘With its complex nonlinear dynamic behavior,the tristable system has shown excellent performance in areas such as energy harvesting and vibration suppression,and has attracted a lot of attention.In this paper,an asymmetric tristable design is proposed to improve the vibration suppression efficiency of nonlinear energy sinks(NESs)for the first time.The proposed asymmetric tristable NES(ATNES)is composed of a pair of oblique springs and a vertical spring.Then,the three stable states,symmetric and asymmetric,can be achieved by the adjustment of the distance and stiffness asymmetry of the oblique springs.The governing equations of a linear oscillator(LO)coupled with the ATNES are derived.The approximate analytical solution to the coupled system is obtained by the harmonic balance method(HBM)and verified numerically.The vibration suppression efficiency of three types of ATNES is compared.The results show that the asymmetric design can improve the efficiency of vibration reduction through comparing the chaotic motion of the NES oscillator between asymmetric steady states.In addition,compared with the symmetrical tristable NES(TNES),the ATNES can effectively control smaller structural vibrations.In other words,the ATNES can effectively solve the threshold problem of TNES failure to weak excitation.Therefore,this paper reveals the vibration reduction mechanism of the ATNES,and provides a pathway to expand the effective excitation amplitude range of the NES.
基金supported by the National key research and development program (2019YFA0607104)National Natural Science Foundation of China (Grant Nos. 41991231, 42275034, 41975076, 42075029, 42075017, and 42075018)the Gansu Provincial Science and Technology Project (22JR5RA405)。
文摘As an important factor that directly affects agricultural production, the social economy, and policy implementation,observed changes in dry/wet conditions have become a matter of widespread concern. However, previous research has mainly focused on the long-term linear changes of dry/wet conditions, while the detection and evolution of the non-linear trends related to dry/wet changes have received less attention. The non-linear trends of the annual aridity index, obtained by the Ensemble Empirical Mode Decomposition(EEMD) method, reveal that changes in dry/wet conditions in China are asymmetric and can be characterized by contrasting features in both time and space in China. Spatially, most areas in western China have experienced transitions from drying to wetting, while opposite changes have occurred in most areas of eastern China. Temporally, the transitions occurred earlier in western China compared to eastern China. Research into the asymmetric spatial characteristics of dry/wet conditions compensates for the inadequacies of previous studies, which focused solely on temporal evolution;at the same time, it remedies the inadequacies of traditional research on linear trends over centennial timescales. Analyzing the non-linear trend also provides for a more comprehensive understanding of the drying/wetting changes in China.
基金The Qian Xuesen Youth Innovation Foundation from China Aerospace Science and Technology Corporation(Grant Number 2022JY51).
文摘The demand for adopting neural networks in resource-constrained embedded devices is continuously increasing.Quantization is one of the most promising solutions to reduce computational cost and memory storage on embedded devices.In order to reduce the complexity and overhead of deploying neural networks on Integeronly hardware,most current quantization methods use a symmetric quantization mapping strategy to quantize a floating-point neural network into an integer network.However,although symmetric quantization has the advantage of easier implementation,it is sub-optimal for cases where the range could be skewed and not symmetric.This often comes at the cost of lower accuracy.This paper proposed an activation redistribution-based hybrid asymmetric quantizationmethod for neural networks.The proposedmethod takes data distribution into consideration and can resolve the contradiction between the quantization accuracy and the ease of implementation,balance the trade-off between clipping range and quantization resolution,and thus improve the accuracy of the quantized neural network.The experimental results indicate that the accuracy of the proposed method is 2.02%and 5.52%higher than the traditional symmetric quantization method for classification and detection tasks,respectively.The proposed method paves the way for computationally intensive neural network models to be deployed on devices with limited computing resources.Codes will be available on https://github.com/ycjcy/Hybrid-Asymmetric-Quantization.
基金National Natural Science Foundation of China(52202299)the Analytical&Testing Center of Northwestern Polytechnical University(2022T006).
文摘With the rapid development of portable electronics and electric road vehicles,high-energy-density batteries have been becoming front-burner issues.Traditionally,homogeneous electrolyte cannot simultaneously meet diametrically opposed demands of high-potential cathode and low-potential anode,which are essential for high-voltage batteries.Meanwhile,homogeneous electrolyte is difficult to achieve bi-or multi-functions to meet different requirements of electrodes.In comparison,the asymmetric electrolyte with bi-or multi-layer disparate components can satisfy distinct requirements by playing different roles of each electrolyte layer and meanwhile compensates weakness of individual electrolyte.Consequently,the asymmetric electrolyte can not only suppress by-product sedimentation and continuous electrolyte decomposition at the anode while preserving active substances at the cathode for high-voltage batteries with long cyclic lifespan.In this review,we comprehensively divide asymmetric electrolytes into three categories:decoupled liquid-state electrolytes,bi-phase solid/liquid electrolytes and decoupled asymmetric solid-state electrolytes.The design principles,reaction mechanism and mutual compatibility are also studied,respectively.Finally,we provide a comprehensive vision for the simplification of structure to reduce costs and increase device energy density,and the optimization of solvation structure at anolyte/catholyte interface to realize fast ion transport kinetics.
基金Project supported by the Natural Science Foundation of Shandong Province of China for the Youth (Grant No. ZR2023QA102)。
文摘This study investigates the dynamical behaviors of nearest neighbor asymmetric coupled systems in a confined space.First, the study derivative analytical stability and synchronization conditions for the asymmetrically coupled system in an unconfined space, which are then validated through numerical simulations. Simulation results show that asymmetric coupling has a significant impact on synchronization conditions. Moreover, it is observed that irrespective of whether the system is confined, an increase in coupling asymmetry leads to a hastened synchronization pace. Additionally, the study examines the effects of boundaries on the system's collective behaviors via numerical experiments. The presence of boundaries ensures the system's stability and synchronization, and reducing these boundaries can expedite the synchronization process and amplify its effects. Finally, the study reveals that the system's output amplitude exhibits stochastic resonance as the confined boundary size increases.
基金the National Natural Science Foundation of China(Grant Nos.12164032,11964026,and 12364010)the Natural Science Foundation of Inner Mongolia Autonomous Region,China(Grant Nos.2019MS01010,2022MS01014,and 2020BS01009)+1 种基金the Doctor Research Start-up Fund of Inner Mongolia Minzu University(Grant Nos.BS625 and BS439)the Basic Research Funds for Universities Directly under the Inner Mongolia Autonomous Region,China(Grant No.GXKY23Z029).
文摘We have applied strong coupling unitary transformation method combined with Bose–Einstein statistical law to investigate magnetopolaron energy level temperature effects in halogen ion crystal quantum wells.The obtained results showed that under magnetic field effect,magnetopolaron quasiparticle was formed through the interaction of electrons and surrounding phonons.At the same time,magnetopolaron was influenced by phonon temperature statistical law and important energy level shifts down and binding energy increases.This revealed that lattice temperature and magnetic field could easily affect magnetopolaron and the above results could play key roles in exploring thermoelectric conversion and conductivity of crystal materials.
基金This work was supported by the Project of Natural Science Foundation of Anhui Province,China(2008085qc118)the National Natural Science Foundation of China(U19A2021)+1 种基金the Major Science and Technology Special Project of Anhui Province,China(S202003a06020035)the Jiangsu Collaborative Innovation Center for Modern Crop Production,China(JCIC-MCP).
文摘Global climate change is characterized by asymmetric warming,i.e.,greater temperature increases in winter,spring,and nighttime than in summer,autumn,and daytime.Field experiments were conducted using four wheat cultivars,namely‘Yangmai 18’(YM18),‘Sumai 188’(SM188),‘Yannong 19’(YN19),and‘Annong 0711’(AN0711),in the two growing seasons of 2019-2020 and 2020-2021,with passive night warming during different periods in the early growth stage.The treatments were night warming during the tillering-jointing(NW_(T-J)),jointing-booting(NWJ-B),and booting-anthesis(NWB-A)stages,with ambient temperature(NN)as the control.The effects of night warming during different stages on wheat yield formation were investigated by determining the characteristics of dry matter accumulation and translocation,as well as sucrose and starch accumulation in wheat grains.The wheat yields of all four cultivars were significantly higher in NW_(T-J)than in NN in the 2-year experiment.The yield increases of semi-winter cultivars YN19 and AN0711 were greater than those of spring cultivars YM18 and SM188.Treatment NW_(T-J)increased wheat yield mainly by increasing the 1,000-grain weight and the number of fertile spikelets,and it increased dry matter accumulation in various organs of wheat at the anthesis and maturity stages by increasing the growth rate at the vegetative growth stage.The flag leaf and spike showed the largest increases in dry matter accumulation.NW_(T-J)also increased the grain sucrose and starch contents in the early and middle grain-filling stages,promoting yield formation.Overall,night warming between the tillering and jointing stages increased the pre-anthesis growth rate,and thus,wheat dry matter production,which contributed to an increase in wheat yield.
基金supported by the National Natural Science Foundation of China(52203016)the USTC Research Funds of the Double First-Class Initiative(YD9990002018)+3 种基金the Overseas Students Innovation and Entrepreneurship Support Program Project of Anhui Province(2021LCX022)the Key R&D Projects in Anhui Province(2022i01020012)the Natural Science Foundation of Hefei(2022039)the Excellent Research and Innovation Team Project of Anhui Province(2022AH010001).
文摘α-Diimide catalysts have attracted widespread attention due to their unique chain walking characteristics.A series ofα-diimide nickel/palladium catalysts with different electronic effects and steric hindrances were designed and synthesized for olefin polymerization.In this work,we synthesized a series of asymmetricα-diimide nickel complexes with different steric hindrances and used them for ethylene polymerization.These nickel catalysts have high ethylene polymerization activity,up to 6.51×10^(6)g·mol^(−1)·h^(−1),and the prepared polyethylene has a moderate melting point and high molecular weight(up to 38.2×10^(4)g·mol^(−1)),with a branching density distribution between 7 and 94 branches per 1000 carbons.More importantly,the polyethylene prepared by these catalysts exhibits excellent tensile properties,with strain and stress reaching 800%and 30 MPa,respectively.
基金supported by the National Natural Science Foundation of China (3180031332261123001)+1 种基金Applied Basic Research Foundation of Yunnan Province (202301AT070378, 2019FB034)the “Light of West China” Program of the Chinese Academic of Sciences to J.-F.Huang。
文摘Hybridization plays a significant role in biological evolution. However, it is not clear whether ecological contingency differentially influences likelihood of hybridization, particularly at ecological margins where parental species may exhibit reduced fitnesses. Moreover, it is unknown whether future ecosystem change will increase the prevalence of hybridization. Ficus heterostyla and F. squamosa are closely related species co-distributed from southern Thailand to southwest China where hybridization, yielding viable seeds, has been documented. As a robust test of ecological factors driving hybridization, we investigated spatial hybridization signatures based on nuclear microsatellites from extensive population sampling across a widespread contact range. Both species showed high population differentiation and strong patterns of isolation by distance. Admixture estimates exposed asymmetric interspecific gene flow.Signatures of hybridization increase significantly towards higher latitude zones, peaking at the northern climatic margins. Geographic variation in reproductive phenology combined with ecologically challenging marginal habitats may promote this phenomenon. Our work is a first systematic evaluation of such patterns in a comprehensive, latitudinally-based clinal context, and indicates that tendency to hybridize appears strongly influenced by environmental conditions. Moreover, that future climate change scenarios will likely alter and possibly augment cases of hybridization at ecosystem scales.
文摘We experimentally and theoretically present a paradigm for the accurate bilayer design of gradient metasurfaces for wave beam manipulation,producing an extremely asymmetric splitting effect by simply tailoring the interlayer size.This concept arises from anomalous diffraction in phase gradient metasurfaces and the precise combination of the phase gradient in bilayer metasurfaces.Ensured by different diffraction routes in momentum space for incident beams from opposite directions,extremely asymmetric acoustic beam splitting can be generated in a robust way,as demonstrated in experiments through a designed bilayer system.Our work provides a novel approach and feasible platform for designing tunable devices to control wave propagation.
基金supported by the National Natural Science Foundation of China(62273213,62073199,62103241)Natural Science Foundation of Shandong Province for Innovation and Development Joint Funds(ZR2022LZH001)+4 种基金Natural Science Foundation of Shandong Province(ZR2020MF095,ZR2021QF107)Taishan Scholarship Construction Engineeringthe Original Exploratory Program Project of National Natural Science Foundation of China(62250056)Major Basic Research of Natural Science Foundation of Shandong Province(ZR2021ZD14)High-level Talent Team Project of Qingdao West Coast New Area(RCTD-JC-2019-05)。
文摘The paper addresses the decentralized optimal control and stabilization problems for interconnected systems subject to asymmetric information.Compared with previous work,a closed-loop optimal solution to the control problem and sufficient and necessary conditions for the stabilization problem of the interconnected systems are given for the first time.The main challenge lies in three aspects:Firstly,the asymmetric information results in coupling between control and estimation and failure of the separation principle.Secondly,two extra unknown variables are generated by asymmetric information(different information filtration)when solving forward-backward stochastic difference equations.Thirdly,the existence of additive noise makes the study of mean-square boundedness an obstacle.The adopted technique is proving and assuming the linear form of controllers and establishing the equivalence between the two systems with and without additive noise.A dual-motor parallel drive system is presented to demonstrate the validity of the proposed algorithm.
基金supported by National Natural Science Foundation of China(U21A200313)Key Program of Qingyuan Innovation Laboratory(00221003)‘111’program of Fuzhou University.
文摘Rosin,a renewable and abundant resource,has been extensively processed and chemically modified to endow it with special properties,especially in the surfactant industry.In this study,four rosin-based quaternary ammonium asymmetric gemini surfactants(RGS-2-n)with different alkyl chain lengths(n=12,14,16,18)were synthesized using a simple two-step method based on dehydroabietylamine as the raw material.The feasibility of these surfactants for cleaning purposes was comprehensively evaluated,suggesting that the surfactants own high surface activity and good cleaning performance.Furthermore,by successfully introducing the amine group of dehydroabietylamine into the hydrophilic group of the surfactants,we avoided its potential harm to the environment and water pollution.Density functional theory proves rosin-based gemini surfactants with asymmetric structure can further improve cleaning efficiency.Overall,our findings suggests that RGS-2-n surfactants are promising and sustainable candidates for cleaning electric plates,and provide new opportunities for rosin application in the electric industry.
基金supported by project XJZ2023050044,A2309002 and XJZ2023070052.
文摘In the generalized continuum mechanics(GCM)theory framework,asymmetric wave equations encompass the characteristic scale parameters of the medium,accounting for microstructure interactions.This study integrates two theoretical branches of the GCM,the modified couple stress theory(M-CST)and the one-parameter second-strain-gradient theory,to form a novel asymmetric wave equation in a unified framework.Numerical modeling of the asymmetric wave equation in a unified framework accurately describes subsurface structures with vital implications for subsequent seismic wave inversion and imaging endeavors.However,employing finite-difference(FD)methods for numerical modeling may introduce numerical dispersion,adversely affecting the accuracy of numerical modeling.The design of an optimal FD operator is crucial for enhancing the accuracy of numerical modeling and emphasizing the scale effects.Therefore,this study devises a hybrid scheme called the dung beetle optimization(DBO)algorithm with a simulated annealing(SA)algorithm,denoted as the SA-based hybrid DBO(SDBO)algorithm.An FD operator optimization method under the SDBO algorithm was developed and applied to the numerical modeling of asymmetric wave equations in a unified framework.Integrating the DBO and SA algorithms mitigates the risk of convergence to a local extreme.The numerical dispersion outcomes underscore that the proposed SDBO algorithm yields FD operators with precision errors constrained to 0.5‱while encompassing a broader spectrum coverage.This result confirms the efficacy of the SDBO algorithm.Ultimately,the numerical modeling results demonstrate that the new FD method based on the SDBO algorithm effectively suppresses numerical dispersion and enhances the accuracy of elastic wave numerical modeling,thereby accentuating scale effects.This result is significant for extracting wavefield perturbations induced by complex microstructures in the medium and the analysis of scale effects.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 72174121 and 71774111)the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learningthe Project for the Natural Science Foundation of Shanghai, China (Grant No. 21ZR1444100)
文摘While the interaction between information and disease in static networks has been extensively investigated,many studies have ignored the characteristics of network evolution.In this study,we construct a new two-layer coupling model to explore the interactions between information and disease.The upper layer describes the diffusion of disease-related information,and the lower layer represents the disease transmission.We then use power-law distributions to examine the influence of asymmetric activity levels on dynamic propagation,revealing a mapping relationship characterizing the interconnected propagation of information and diseases among partial nodes within the network.Subsequently,we derive the disease outbreak threshold by using the microscopic Markov-chain approach(MMCA).Finally,we perform extensive Monte Carlo(MC)numerical simulations to verify the accuracy of our theoretical results.Our findings indicate that the activity levels of individuals in the disease transmission layer have a more significant influence on disease transmission compared with the individual activity levels in the information diffusion layer.Moreover,reducing the damping factor can delay disease outbreaks and suppress disease transmission,while improving individual quarantine measures can contribute positively to disease control.This study provides valuable insights into policymakers for developing outbreak prevention and control strategies.
基金financially supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(Grant No.2022R1I1A1A01069442)the 2024 Hongik University Research Fund。
文摘Salter's duck,an asymmetrical wave energy converter(WEC)device,showed high efficiency in extracting energy from 2D regular waves in the past;yet,challenges remain for fluctuating wave conditions.These can potentially be addressed by adopting a negative stiffness mechanism(NSM)in WEC devices to enhance system efficiency,even in highly nonlinear and steep 3D waves.A weakly nonlinear model was developed which incorporated a nonlinear restoring moment and NSM into the linear formulations and was applied to an asymmetric WEC using a time domain potential flow model.The model was initially validated by comparing it with published experimental and numerical computational fluid dynamics results.The current results were in good agreement with the published results.It was found that the energy extraction increased in the range of 6%to 17%during the evaluation of the effectiveness of the NSM in regular waves.Under irregular wave conditions,specifically at the design wave conditions for the selected test site,the energy extraction increased by 2.4%,with annual energy production increments of approximately 0.8MWh.The findings highlight the potential of NSM in enhancing the performance of asymmetric WEC devices,indicating more efficient energy extraction under various wave conditions.
基金supported by the Innovation Foundation of Graduate Student of Harbin Normal University (No.HSDBSCX2023-3),China。
文摘Zn based electrochemical energy storage systems(EES)have attracted tremendous interests owing to their low cost and high intrinsic safety.Nevertheless,the uncontrolled growth of Zn dendrites and the side reactions of Zn metal anodes(ZMAs)severely restrict their applications.To address these issues,we design the asymmetric Zn-N_(4) atomic sites embedded hollow fibers(AS-IHF)as the flexible host for stable ZMAs.Through introducing different nitrogen resources in the synthesis,two kinds of coordination,i,e.Zn-N(pyridinic)and Zn-N(pyrrolic),are introduced in the Zn-N_(4) atomic module synchronously.The asymmetric Zn-N_(4) module with regulated micro-environment facilitates the superior zincophilic features and promotes the Zn adsorption.Meanwhile,the highly porous structure of the hollow fiber effectively reduces local current density,homogenize Zn ion flux,and alleviate structure stress.All the advantages endow the high efficiency and good stability for Zn plating/stripping.Both theoretical and experimental results demonstrate the high reversibility,low nucleation overpotential,and dendritefree behavior of the AS-IHF@Zn anode,which afford the high stability in high-rate and long-term cycling.Moreover,the solid-state Zn-ion hybrid capacitor(ZIHC)based on AS-IHF@Zn anode shows the high flexibility,reliability,and superior long-term cycling capability in a wide-range of temperatures(-20-25℃).Therefore,the present work not only gives a new strategy for modulating local environments of single atomic sites,but also propels the development of flexible power sources for diverse electronics.
基金supported by the National Natural Science Foundation of China(Grant No.51874311,52174096)。
文摘The construction of coal mines often encounters deep composite soft rock roadways,which is characterized by significant deformation and poor stability.To deeply study the failure mechanism and large deformation challenges of a composite strata roadway in deep and soft rock masses,a numerical model of 3DEC tetrahedral blocks was established based on the method of rock quality designation(RQD).The results showed that original support cannot prevent asymmetric failure and large deformation due to the adverse geological environment and unsuitable support design.According to the failure characteristics,a coupling support of“NPR bolt/cable+mesh+shotcrete+steel pipe”was proposed to control the stability of the surrounding rock.The excellent mechanical properties of large deformation(approximately 400 mm)and high constant resistance force(bolt with 180 k N;cable with 350 k N)were evaluated by the tensile tests.The numerical results showed that the maximum deformation was minimized to 243 mm,and the bearing capacity of the surrounding rock of the roadway was enhanced.The field test results showed that the maximum deformation of the surrounding rock was 210 mm,and the forces of the NPR bolt and cable were stable at approximately 180 k N and 350 k N,respectively.This demonstrated the effectiveness of the coupling support with the NPR bolt and cable,which could be a guiding significance for the safety control of large deformation and failure in deep composite soft rock roadways.
基金Project supported by the National Nature Science Foundation of China(Grant Nos.51737003 and 51977060)the Natural Science Foundation of Hebei Province(Grant No.E2011202051).
文摘The neuron model has been widely employed in neural-morphic computing systems and chaotic circuits.This study aims to develop a novel circuit simulation of a three-neuron Hopfield neural network(HNN)with coupled hyperbolic memristors through the modification of a single coupling connection weight.The bistable mode of the hyperbolic memristive HNN(mHNN),characterized by the coexistence of asymmetric chaos and periodic attractors,is effectively demonstrated through the utilization of conventional nonlinear analysis techniques.These techniques include bifurcation diagrams,two-parameter maximum Lyapunov exponent plots,local attractor basins,and phase trajectory diagrams.Moreover,an encryption technique for color images is devised by leveraging the mHNN model and asymmetric structural attractors.This method demonstrates significant benefits in correlation,information entropy,and resistance to differential attacks,providing strong evidence for its effectiveness in encryption.Additionally,an improved modular circuit design method is employed to create the analog equivalent circuit of the memristive HNN.The correctness of the circuit design is confirmed through Multisim simulations,which align with numerical simulations conducted in Matlab.
基金supported by the National Natural Science Foundation of China(Grant No.52372283)China Postdoctoral Science Foundation(Grant No.2023M730826)+1 种基金Heilongjiang Postdoctoral Fund(Grant No.LBH-Z23121)Postdoctoral Fellowship Program of CPSF(Grant No.GZC20233425).
文摘Single-atom materials have demonstrated attractive physicochemical characteristics.However,understanding the relationships between the coordination environment of single atoms and their properties at the atomic level remains a considerable challenge.Herein,a facile waterassisted carbonization approach is developed to fabricate well-defined asymmetrically coordinated Co–N_(4)–O sites on biomass-derived carbon nanofiber(Co–N_(4)–O/NCF)for electromagnetic wave(EMW)absorption.In such nanofiber,one atomically dispersed Co site is coordinated with four N atoms in the graphene basal plane and one oxygen atom in the axial direction.In-depth experimental and theoretical studies reveal that the axial Co–O coordination breaks the charge distribution symmetry in the planar porphyrin-like Co–N_(4) structure,leading to significantly enhanced dielectric polarization loss relevant to the planar Co–N_(4) sites.Importantly,the film based on Co–N_(4)–O/NCF exhibits light weight,flexibility,excellent mechanical properties,great thermal insulating feature,and excellent EMW absorption with a reflection loss of−45.82 dB along with an effective absorption bandwidth of 4.8 GHz.The findings of this work offer insight into the relationships between the single-atom coordination environment and the dielectric performance,and the proposed strategy can be extended toward the engineering of asymmetrically coordinated single atoms for various applications.
基金the Fundamental Research Funds for the Central Universities(Grant No.2024MS126).
文摘The Riemann–Hilbert approach is demonstrated to investigate the defocusing Lakshmanan–Porsezian–Daniel equation under fully asymmetric nonzero boundary conditions.In contrast to the symmetry case,this paper focuses on the branch points related to the scattering problem rather than using the Riemann surfaces.For the direct problem,we analyze the Jost solution of lax pairs and some properties of scattering matrix,including two kinds of symmetries.The inverse problem at branch points can be presented,corresponding to the associated Riemann–Hilbert.Moreover,we investigate the time evolution problem and estimate the value of solving the solutions by Jost function.For the inverse problem,we construct it as a Riemann–Hilbert problem and formulate the reconstruction formula for the defocusing Lakshmanan–Porsezian–Daniel equation.The solutions of the Riemann–Hilbert problem can be constructed by estimating the solutions.Finally,we work out the solutions under fully asymmetric nonzero boundary conditions precisely via utilizing the Sokhotski–Plemelj formula and the square of the negative column transformation with the assistance of Riemann surfaces.These results are valuable for understanding physical phenomena and developing further applications of optical problems.