Spinor Bose–Einstein condensates(BECs)are formed when atoms in the multi-component BECs possess single hyperfine spin states but retain internal spin degrees of freedom.This study concentrates on a(1+1)-dimensional t...Spinor Bose–Einstein condensates(BECs)are formed when atoms in the multi-component BECs possess single hyperfine spin states but retain internal spin degrees of freedom.This study concentrates on a(1+1)-dimensional three-couple Gross–Pitaevskii system to depict the macroscopic spinor BEC waves within the meanfield approximation.Regarding the distribution of the atoms corresponding to the three vertical spin projections,a known binary Darboux transformation is utilized to derive the𝑁matter-wave soliton solutions and triple-pole matter-wave soliton solutions on the zero background,where𝑁is a positive integer.For those multiple matterwave solitons,the asymptotic analysis is performed to obtain the algebraic expressions of the soliton components in the𝑁matter-wave solitons and triple-pole matter-wave solitons.The asymptotic results indicate that the matter-wave solitons in the spinor BECs possess the property of maintaining their energy content and coherence during the propagation and interactions.Particularly,in the𝑁matter-wave solitons,each soliton component contributes to the phase shifts of the other soliton components;and in the triple-pole matter-wave solitons,stable attractive forces exist between the different matter-wave soliton components.Those multiple matter-wave solitons are graphically illustrated through three-dimensional plots,density plot and contour plot,which are consistent with the asymptotic analysis results.The present analysis may provide the explanations for the complex natural mechanisms of the matter waves in the spinor BECs,and may have potential applications in designs of atom lasers,atom interferometry and coherent atom transport.展开更多
This paper discusses a queueing system with a retrial orbit and batch service, in which the quantity of customers’ rooms in the queue is finite and the space of retrial orbit is infinite. When the server starts servi...This paper discusses a queueing system with a retrial orbit and batch service, in which the quantity of customers’ rooms in the queue is finite and the space of retrial orbit is infinite. When the server starts serving, it serves all customers in the queue in a single batch, which is the so-called batch service. If a new customer or a retrial customer finds all the customers’ rooms are occupied, he will decide whether or not to join the retrial orbit. By using the censoring technique and the matrix analysis method, we first obtain the decay function of the stationary distribution for the quantity of customers in the retrial orbit and the quantity of customers in the queue. Then based on the form of decay rate function and the Karamata Tauberian theorem, we finally get the exact tail asymptotics of the stationary distribution.展开更多
The rich literature concerning “asymptotic behavior of Hankel determinants” concerns the behavior, as the order n tends to ∞, of Hankel determinants whose entries are numbers, e.g., with a combinatorial interest or...The rich literature concerning “asymptotic behavior of Hankel determinants” concerns the behavior, as the order n tends to ∞, of Hankel determinants whose entries are numbers, e.g., with a combinatorial interest or arising as values of special classes of functions. Such determinants are numbers depending on n, playing roles in number theory, combinatorics, random matrices and the like;and mathematicians in the involved fields have been interested in their asymptotic behaviors as n goes to ∞, as previously mentioned, with no single exception to the author’s knowledge. The study carried on in the present paper treats an altogether different situation as suggested by the specification in the title “as the variable tends to +∞”. We deal with those types of Hankel determinants (purposely called Hankelians) which are special cases of Wronskians and, continuing our work on the asymptotics of Wronskians, we study the asymptotic behaviors of n-order Hankelians, whose entries involve either regularly- or rapidly-varying functions, when the variable tends to +∞. As in the study of Wronskians, the treatment of this case also needs the whole apparatus of the theory of higher-order types of asymptotic variation, but the most demanding results are not automatic corollaries of the general theory. In fact, in the study of generic Wronskians (study motivated by applications to asymptotic expansions), the entries were required to belong to one of the classes of “higher-order regular or rapid variation”;on the contrary, in the case of Hankelians, we are confronted with functions whose logarithms are either “regularly- or rapidly-varying functions”, roughly classifiable as “ultrarapidly-varying functions”, and the study requires both special devices and a number of preliminary lemmas about products and linear combinations of functions in the mentioned classes.展开更多
This paper mainly focuses on the development of a learning-based controller for a class of uncertain mechanical systems modeled by the Euler-Lagrange formulation.The considered system can depict the behavior of a larg...This paper mainly focuses on the development of a learning-based controller for a class of uncertain mechanical systems modeled by the Euler-Lagrange formulation.The considered system can depict the behavior of a large class of engineering systems,such as vehicular systems,robot manipulators and satellites.All these systems are often characterized by highly nonlinear characteristics,heavy modeling uncertainties and unknown perturbations,therefore,accurate-model-based nonlinear control approaches become unavailable.Motivated by the challenge,a reinforcement learning(RL)adaptive control methodology based on the actor-critic framework is investigated to compensate the uncertain mechanical dynamics.The approximation inaccuracies caused by RL and the exogenous unknown disturbances are circumvented via a continuous robust integral of the sign of the error(RISE)control approach.Different from a classical RISE control law,a tanh(·)function is utilized instead of a sign(·)function to acquire a more smooth control signal.The developed controller requires very little prior knowledge of the dynamic model,is robust to unknown dynamics and exogenous disturbances,and can achieve asymptotic output tracking.Eventually,co-simulations through ADAMS and MATLAB/Simulink on a three degrees-of-freedom(3-DOF)manipulator and experiments on a real-time electromechanical servo system are performed to verify the performance of the proposed approach.展开更多
In this paper,we consider the limit distribution of the error density function estima-tor in the rst-order autoregressive models with negatively associated and positively associated random errors.Under mild regularity...In this paper,we consider the limit distribution of the error density function estima-tor in the rst-order autoregressive models with negatively associated and positively associated random errors.Under mild regularity assumptions,some asymptotic normality results of the residual density estimator are obtained when the autoregressive models are stationary process and explosive process.In order to illustrate these results,some simulations such as con dence intervals and mean integrated square errors are provided in this paper.It shows that the residual density estimator can replace the density\estimator"which contains errors.展开更多
This article proposes a modeling method for C/C-ZrC composite materials.According to the superposition of Gaussian random field,the original gray model is obtained,and the threshold segmentation method is used to gene...This article proposes a modeling method for C/C-ZrC composite materials.According to the superposition of Gaussian random field,the original gray model is obtained,and the threshold segmentation method is used to generate the C-ZrC inclusion model.Finally,the fiber structure is added to construct the microstructure of the three-phase plain weave composite.The reconstructed inclusions can meet the randomness of the shape and have a uniform distribution.Using an algorithm based on asymptotic homogenization and finite element method,the equivalent thermal conductivity prediction of the microstructure finite element model was carried out,and the influence of component volume fraction on material thermal properties was explored.The sensitivity of model parameters was studied,including the size,mesh sensitivity,Gaussian complexity,and correlation length of the RVE model,and the optimal calculation model was selected.The results indicate that the volume fraction of the inclusion phase has a significant impact on the equivalent thermal conductivity of the material.As the volume fraction of carbon fiber and ZrC increases,the equivalent thermal conductivity tensor gradually decreases.This model can be used to explore the impact of materialmicrostructure on the results,and numerical simulations have studied the relationship between structure and performance,providing the possibility of designing microstructure based on performance.展开更多
In this note,we prove a logarithmic Sobolev inequality which holds for compact submanifolds without a boundary in manifolds with asymptotically nonnegative sectional curvature.Like the Michale-Simon Sobolev inequality...In this note,we prove a logarithmic Sobolev inequality which holds for compact submanifolds without a boundary in manifolds with asymptotically nonnegative sectional curvature.Like the Michale-Simon Sobolev inequality,this inequality contains a term involving the mean curvature.展开更多
In this paper,we consider a class of third-order nonlinear delay dynamic equations.First,we establish a Kiguradze-type lemma and some useful estimates.Second,we give a sufficient and necessary condition for the existe...In this paper,we consider a class of third-order nonlinear delay dynamic equations.First,we establish a Kiguradze-type lemma and some useful estimates.Second,we give a sufficient and necessary condition for the existence of eventually positive solutions having upper bounds and tending to zero.Third,we obtain new oscillation criteria by employing the Potzsche chain rule.Then,using the generalized Riccati transformation technique and averaging method,we establish the Philos-type oscillation criteria.Surprisingly,the integral value of the Philos-type oscillation criteria,which guarantees that all unbounded solutions oscillate,is greater than θ_(4)(t_(1),T).The results of Theorem 3.5 and Remark 3.6 are novel.Finally,we offer four examples to illustrate our results.展开更多
In differentiable search architecture search methods,a more efficient search space design can significantly improve the performance of the searched architecture,thus requiring people to carefully define the search spa...In differentiable search architecture search methods,a more efficient search space design can significantly improve the performance of the searched architecture,thus requiring people to carefully define the search space with different complexity according to various operations.Meanwhile rationalizing the search strategies to explore the well-defined search space will further improve the speed and efficiency of architecture search.With this in mind,we propose a faster and more efficient differentiable architecture search method,AllegroNAS.Firstly,we introduce a more efficient search space enriched by the introduction of two redefined convolution modules.Secondly,we utilize a more efficient architectural parameter regularization method,mitigating the overfitting problem during the search process and reducing the error brought about by gradient approximation.Meanwhile,we introduce a natural exponential cosine annealing method to make the learning rate of the neural network training process more suitable for the search procedure.Moreover,group convolution and data augmentation are employed to reduce the computational cost.Finally,through extensive experiments on several public datasets,we demonstrate that our method can more swiftly search for better-performing neural network architectures in a more efficient search space,thus validating the effectiveness of our approach.展开更多
We present a class of arbitrarily high order fully explicit kinetic numerical methods in compressible fluid dynamics,both in time and space,which include the relaxation schemes by Jin and Xin.These methods can use the...We present a class of arbitrarily high order fully explicit kinetic numerical methods in compressible fluid dynamics,both in time and space,which include the relaxation schemes by Jin and Xin.These methods can use the CFL number larger or equal to unity on regular Cartesian meshes for the multi-dimensional case.These kinetic models depend on a small parameter that can be seen as a"Knudsen"number.The method is asymptotic preserving in this Knudsen number.Also,the computational costs of the method are of the same order of a fully explicit scheme.This work is the extension of Abgrall et al.(2022)[3]to multidimensional systems.We have assessed our method on several problems for two-dimensional scalar problems and Euler equations and the scheme has proven to be robust and to achieve the theoretically predicted high order of accuracy on smooth solutions.展开更多
In this paper,we study the asymptotic dynamics of a single-species model with resource-dependent dispersal in one dimension.To overcome the analytical difficulties brought by the resource-dependent dispersal,we use th...In this paper,we study the asymptotic dynamics of a single-species model with resource-dependent dispersal in one dimension.To overcome the analytical difficulties brought by the resource-dependent dispersal,we use the idea of changing variables to transform the model into a uniform dispersal one.Then the existence and uniqueness of positive stationary solution to the model can be verified by the squeezing argument,where the solution plays a crucial role in later analyses.Moreover,the asymptotic behavior of solutions to the model is obtained by the upper-lower solutions method.The result indicates that the solutions of the model converge to the corresponding positive stationary solution locally uniformly in one dimension as time goes to infinity.展开更多
There are many works on the asymptotic stability of second dimensional nonlinear differential equation. In particular, these results only concern with the system which includes one or two terms, whereas few works conc...There are many works on the asymptotic stability of second dimensional nonlinear differential equation. In particular, these results only concern with the system which includes one or two terms, whereas few works concern with system which includes more than two terms. In this paper, system which includes four nonlinear terms are studies. We obtain the global asymptotic stability of zero solution, and discard the condition which require the Liapunov function trends to infinity, and only require that the positive orbit is bounded.展开更多
This paper an cited instances in illustration of the incorrectness of the criteria of asymptotic stability of a class of nonlinear large seale system that L_j·T·Grujie gave in paper [1] by the comparison the...This paper an cited instances in illustration of the incorrectness of the criteria of asymptotic stability of a class of nonlinear large seale system that L_j·T·Grujie gave in paper [1] by the comparison theory and then corrected it,and has given the sufficient conditions of the asymptotic stability.展开更多
A mechanical model of the quasi-static interface of a mode I crack between a rigid and a pressure-sensitive viscoelastic material was established to investigate the mechanical characteristic of ship-building engineeri...A mechanical model of the quasi-static interface of a mode I crack between a rigid and a pressure-sensitive viscoelastic material was established to investigate the mechanical characteristic of ship-building engineering hi-materials. In the stable growth stage, stress and strain have the same singularity, ie (σ, ε) ∝ r^-1/(n-1). The variable-separable asymptotic solutions of stress and strain at the crack tip were obtained by adopting Airy's stress function and the numerical results of stress and strain in the crack-tip field were obtained by the shooting method. The results showed that the near-tip fields are mainly governed by the power-hardening exponent n and the Poisson ratio v of the pressure-sensitive material. The fracture criterion of mode I quasi-static crack growth in pressure-sensitive materials, according to the asymptotic analyses of the crack-tip field, can be viewed from the perspective of strain.展开更多
Aim To obtain new criteria for asymptotic behavior and nonexistence of positive solutions of nonlinear neutral delay difference equations. Methods By means of Hlder inequality and a method of direct analysis, some i...Aim To obtain new criteria for asymptotic behavior and nonexistence of positive solutions of nonlinear neutral delay difference equations. Methods By means of Hlder inequality and a method of direct analysis, some interesting Lemmas were offered. Results and Conclusion New criteria for asymptotic behavior and nonexistence of positive solutions of nonlinear neutral delay difference equations are established, which extend and improve the results obtained in the literature. Some interesting examples illustrating the importance of our results are also included.展开更多
This paper is concerned with the generalzed global solution and its asymptotic properties for the initial value problem of the partial differential equationu t+u x 3 =F(u).
This article considers the equation △2u = f(x,u)with boundary conditions either u|aΩ = au/an|aΩ = 0 or u|aΩ = △u|aΩ = 0, where f(x, t) is asymptotically linear with respect to t at infinity, and Ω is a ...This article considers the equation △2u = f(x,u)with boundary conditions either u|aΩ = au/an|aΩ = 0 or u|aΩ = △u|aΩ = 0, where f(x, t) is asymptotically linear with respect to t at infinity, and Ω is a smooth bounded domain in R^N, N 〉 4. By a variant version of Mountain Pass Theorem, it is proved that the above problems have a nontrivial solution under suitable assumptions of f(x, t).展开更多
The three species Lotka-Volterra periodic model with two predators and one prey is considered.A set of easily verifiable sufficient conditions is obtained.Finallyt an example is given to illustrate the feasibility of ...The three species Lotka-Volterra periodic model with two predators and one prey is considered.A set of easily verifiable sufficient conditions is obtained.Finallyt an example is given to illustrate the feasibility of these conditions.展开更多
In this article, we consider a stochastic SIR model and show that the distributions of the solutions of the system are absolutely continuous. Furthermore, we analyze long-time behaviour of densities of the distributio...In this article, we consider a stochastic SIR model and show that the distributions of the solutions of the system are absolutely continuous. Furthermore, we analyze long-time behaviour of densities of the distributions of the solution. We prove that the densities can converge in L1 to an invariant density.展开更多
It is well-known that the complete convergence theorem for i.i.d, random vari- ables has been an active topic since the famous work done by Hsu and Robbins [6]. Chow [4] obtained a moment version of Hsu and Robbins se...It is well-known that the complete convergence theorem for i.i.d, random vari- ables has been an active topic since the famous work done by Hsu and Robbins [6]. Chow [4] obtained a moment version of Hsu and Robbins series. However, the series tends to infinity whenever c goes to zero, so it is of interest to investigate the asymptotic behavior of the series as e goes to zero. This note gives some limit theorems of the series generated by moments for NA random variables.展开更多
基金work was supported by the National Natural Science Foundation of China(Grant No.12161061)the Fundamental Research Funds for the Inner Mongolia University of Finance and Economics(Grant No.NCYWT23036)+2 种基金the Young innovative and Entrepreneurial Talents of the Inner Mongolia Grassland Talents Project in 2022,Autonomous Region“Five Ma-jor Tasks"Research Special Project for the Inner Mongo-lia University of Finance and Economics in 2024(Grant No.NCXWD2422)High Quality Research Achievement Cultivation Fund for the Inner Mongolia University of Fi-nance and Economics in 2024(Grant No.GZCG2426)the Talent Development Fund of Inner Mongolia.
文摘Spinor Bose–Einstein condensates(BECs)are formed when atoms in the multi-component BECs possess single hyperfine spin states but retain internal spin degrees of freedom.This study concentrates on a(1+1)-dimensional three-couple Gross–Pitaevskii system to depict the macroscopic spinor BEC waves within the meanfield approximation.Regarding the distribution of the atoms corresponding to the three vertical spin projections,a known binary Darboux transformation is utilized to derive the𝑁matter-wave soliton solutions and triple-pole matter-wave soliton solutions on the zero background,where𝑁is a positive integer.For those multiple matterwave solitons,the asymptotic analysis is performed to obtain the algebraic expressions of the soliton components in the𝑁matter-wave solitons and triple-pole matter-wave solitons.The asymptotic results indicate that the matter-wave solitons in the spinor BECs possess the property of maintaining their energy content and coherence during the propagation and interactions.Particularly,in the𝑁matter-wave solitons,each soliton component contributes to the phase shifts of the other soliton components;and in the triple-pole matter-wave solitons,stable attractive forces exist between the different matter-wave soliton components.Those multiple matter-wave solitons are graphically illustrated through three-dimensional plots,density plot and contour plot,which are consistent with the asymptotic analysis results.The present analysis may provide the explanations for the complex natural mechanisms of the matter waves in the spinor BECs,and may have potential applications in designs of atom lasers,atom interferometry and coherent atom transport.
文摘This paper discusses a queueing system with a retrial orbit and batch service, in which the quantity of customers’ rooms in the queue is finite and the space of retrial orbit is infinite. When the server starts serving, it serves all customers in the queue in a single batch, which is the so-called batch service. If a new customer or a retrial customer finds all the customers’ rooms are occupied, he will decide whether or not to join the retrial orbit. By using the censoring technique and the matrix analysis method, we first obtain the decay function of the stationary distribution for the quantity of customers in the retrial orbit and the quantity of customers in the queue. Then based on the form of decay rate function and the Karamata Tauberian theorem, we finally get the exact tail asymptotics of the stationary distribution.
文摘The rich literature concerning “asymptotic behavior of Hankel determinants” concerns the behavior, as the order n tends to ∞, of Hankel determinants whose entries are numbers, e.g., with a combinatorial interest or arising as values of special classes of functions. Such determinants are numbers depending on n, playing roles in number theory, combinatorics, random matrices and the like;and mathematicians in the involved fields have been interested in their asymptotic behaviors as n goes to ∞, as previously mentioned, with no single exception to the author’s knowledge. The study carried on in the present paper treats an altogether different situation as suggested by the specification in the title “as the variable tends to +∞”. We deal with those types of Hankel determinants (purposely called Hankelians) which are special cases of Wronskians and, continuing our work on the asymptotics of Wronskians, we study the asymptotic behaviors of n-order Hankelians, whose entries involve either regularly- or rapidly-varying functions, when the variable tends to +∞. As in the study of Wronskians, the treatment of this case also needs the whole apparatus of the theory of higher-order types of asymptotic variation, but the most demanding results are not automatic corollaries of the general theory. In fact, in the study of generic Wronskians (study motivated by applications to asymptotic expansions), the entries were required to belong to one of the classes of “higher-order regular or rapid variation”;on the contrary, in the case of Hankelians, we are confronted with functions whose logarithms are either “regularly- or rapidly-varying functions”, roughly classifiable as “ultrarapidly-varying functions”, and the study requires both special devices and a number of preliminary lemmas about products and linear combinations of functions in the mentioned classes.
基金supported in part by the National Key R&D Program of China under Grant 2021YFB2011300the National Natural Science Foundation of China under Grant 52075262。
文摘This paper mainly focuses on the development of a learning-based controller for a class of uncertain mechanical systems modeled by the Euler-Lagrange formulation.The considered system can depict the behavior of a large class of engineering systems,such as vehicular systems,robot manipulators and satellites.All these systems are often characterized by highly nonlinear characteristics,heavy modeling uncertainties and unknown perturbations,therefore,accurate-model-based nonlinear control approaches become unavailable.Motivated by the challenge,a reinforcement learning(RL)adaptive control methodology based on the actor-critic framework is investigated to compensate the uncertain mechanical dynamics.The approximation inaccuracies caused by RL and the exogenous unknown disturbances are circumvented via a continuous robust integral of the sign of the error(RISE)control approach.Different from a classical RISE control law,a tanh(·)function is utilized instead of a sign(·)function to acquire a more smooth control signal.The developed controller requires very little prior knowledge of the dynamic model,is robust to unknown dynamics and exogenous disturbances,and can achieve asymptotic output tracking.Eventually,co-simulations through ADAMS and MATLAB/Simulink on a three degrees-of-freedom(3-DOF)manipulator and experiments on a real-time electromechanical servo system are performed to verify the performance of the proposed approach.
基金supported by the National Natural Science Foundation of China(12131015,12071422)。
文摘In this paper,we consider the limit distribution of the error density function estima-tor in the rst-order autoregressive models with negatively associated and positively associated random errors.Under mild regularity assumptions,some asymptotic normality results of the residual density estimator are obtained when the autoregressive models are stationary process and explosive process.In order to illustrate these results,some simulations such as con dence intervals and mean integrated square errors are provided in this paper.It shows that the residual density estimator can replace the density\estimator"which contains errors.
基金Lisheng Liu acknowledges the support from the National Natural Science Foundation of China(No.11972267).
文摘This article proposes a modeling method for C/C-ZrC composite materials.According to the superposition of Gaussian random field,the original gray model is obtained,and the threshold segmentation method is used to generate the C-ZrC inclusion model.Finally,the fiber structure is added to construct the microstructure of the three-phase plain weave composite.The reconstructed inclusions can meet the randomness of the shape and have a uniform distribution.Using an algorithm based on asymptotic homogenization and finite element method,the equivalent thermal conductivity prediction of the microstructure finite element model was carried out,and the influence of component volume fraction on material thermal properties was explored.The sensitivity of model parameters was studied,including the size,mesh sensitivity,Gaussian complexity,and correlation length of the RVE model,and the optimal calculation model was selected.The results indicate that the volume fraction of the inclusion phase has a significant impact on the equivalent thermal conductivity of the material.As the volume fraction of carbon fiber and ZrC increases,the equivalent thermal conductivity tensor gradually decreases.This model can be used to explore the impact of materialmicrostructure on the results,and numerical simulations have studied the relationship between structure and performance,providing the possibility of designing microstructure based on performance.
基金Supported by the NSFC(11771087,12171091 and 11831005)。
文摘In this note,we prove a logarithmic Sobolev inequality which holds for compact submanifolds without a boundary in manifolds with asymptotically nonnegative sectional curvature.Like the Michale-Simon Sobolev inequality,this inequality contains a term involving the mean curvature.
基金supported by the National Natural Science Foundation of China(12071491,12001113)。
文摘In this paper,we consider a class of third-order nonlinear delay dynamic equations.First,we establish a Kiguradze-type lemma and some useful estimates.Second,we give a sufficient and necessary condition for the existence of eventually positive solutions having upper bounds and tending to zero.Third,we obtain new oscillation criteria by employing the Potzsche chain rule.Then,using the generalized Riccati transformation technique and averaging method,we establish the Philos-type oscillation criteria.Surprisingly,the integral value of the Philos-type oscillation criteria,which guarantees that all unbounded solutions oscillate,is greater than θ_(4)(t_(1),T).The results of Theorem 3.5 and Remark 3.6 are novel.Finally,we offer four examples to illustrate our results.
基金This work was supported in part by the National Natural Science Foundation of China under Grant 61305001the Natural Science Foundation of Heilongjiang Province of China under Grant F201222.
文摘In differentiable search architecture search methods,a more efficient search space design can significantly improve the performance of the searched architecture,thus requiring people to carefully define the search space with different complexity according to various operations.Meanwhile rationalizing the search strategies to explore the well-defined search space will further improve the speed and efficiency of architecture search.With this in mind,we propose a faster and more efficient differentiable architecture search method,AllegroNAS.Firstly,we introduce a more efficient search space enriched by the introduction of two redefined convolution modules.Secondly,we utilize a more efficient architectural parameter regularization method,mitigating the overfitting problem during the search process and reducing the error brought about by gradient approximation.Meanwhile,we introduce a natural exponential cosine annealing method to make the learning rate of the neural network training process more suitable for the search procedure.Moreover,group convolution and data augmentation are employed to reduce the computational cost.Finally,through extensive experiments on several public datasets,we demonstrate that our method can more swiftly search for better-performing neural network architectures in a more efficient search space,thus validating the effectiveness of our approach.
基金funded by the SNF project 200020_204917 entitled"Structure preserving and fast methods for hyperbolic systems of conservation laws".
文摘We present a class of arbitrarily high order fully explicit kinetic numerical methods in compressible fluid dynamics,both in time and space,which include the relaxation schemes by Jin and Xin.These methods can use the CFL number larger or equal to unity on regular Cartesian meshes for the multi-dimensional case.These kinetic models depend on a small parameter that can be seen as a"Knudsen"number.The method is asymptotic preserving in this Knudsen number.Also,the computational costs of the method are of the same order of a fully explicit scheme.This work is the extension of Abgrall et al.(2022)[3]to multidimensional systems.We have assessed our method on several problems for two-dimensional scalar problems and Euler equations and the scheme has proven to be robust and to achieve the theoretically predicted high order of accuracy on smooth solutions.
基金supported by the National Natural Science Foundation of China (Nos.12301101,12101121)the Guangdong Basic and Applied Basic Research Foundation (Nos.2022A1515110019,2020A1515110585)。
文摘In this paper,we study the asymptotic dynamics of a single-species model with resource-dependent dispersal in one dimension.To overcome the analytical difficulties brought by the resource-dependent dispersal,we use the idea of changing variables to transform the model into a uniform dispersal one.Then the existence and uniqueness of positive stationary solution to the model can be verified by the squeezing argument,where the solution plays a crucial role in later analyses.Moreover,the asymptotic behavior of solutions to the model is obtained by the upper-lower solutions method.The result indicates that the solutions of the model converge to the corresponding positive stationary solution locally uniformly in one dimension as time goes to infinity.
文摘There are many works on the asymptotic stability of second dimensional nonlinear differential equation. In particular, these results only concern with the system which includes one or two terms, whereas few works concern with system which includes more than two terms. In this paper, system which includes four nonlinear terms are studies. We obtain the global asymptotic stability of zero solution, and discard the condition which require the Liapunov function trends to infinity, and only require that the positive orbit is bounded.
文摘This paper an cited instances in illustration of the incorrectness of the criteria of asymptotic stability of a class of nonlinear large seale system that L_j·T·Grujie gave in paper [1] by the comparison theory and then corrected it,and has given the sufficient conditions of the asymptotic stability.
基金Supported by Heilongjiang Province Foundation under Grant No.LC08C02
文摘A mechanical model of the quasi-static interface of a mode I crack between a rigid and a pressure-sensitive viscoelastic material was established to investigate the mechanical characteristic of ship-building engineering hi-materials. In the stable growth stage, stress and strain have the same singularity, ie (σ, ε) ∝ r^-1/(n-1). The variable-separable asymptotic solutions of stress and strain at the crack tip were obtained by adopting Airy's stress function and the numerical results of stress and strain in the crack-tip field were obtained by the shooting method. The results showed that the near-tip fields are mainly governed by the power-hardening exponent n and the Poisson ratio v of the pressure-sensitive material. The fracture criterion of mode I quasi-static crack growth in pressure-sensitive materials, according to the asymptotic analyses of the crack-tip field, can be viewed from the perspective of strain.
文摘Aim To obtain new criteria for asymptotic behavior and nonexistence of positive solutions of nonlinear neutral delay difference equations. Methods By means of Hlder inequality and a method of direct analysis, some interesting Lemmas were offered. Results and Conclusion New criteria for asymptotic behavior and nonexistence of positive solutions of nonlinear neutral delay difference equations are established, which extend and improve the results obtained in the literature. Some interesting examples illustrating the importance of our results are also included.
文摘This paper is concerned with the generalzed global solution and its asymptotic properties for the initial value problem of the partial differential equationu t+u x 3 =F(u).
基金This work was supported by NSFC(10571174,10631030)and CAS(KJCX3-SYW-S03)
文摘This article considers the equation △2u = f(x,u)with boundary conditions either u|aΩ = au/an|aΩ = 0 or u|aΩ = △u|aΩ = 0, where f(x, t) is asymptotically linear with respect to t at infinity, and Ω is a smooth bounded domain in R^N, N 〉 4. By a variant version of Mountain Pass Theorem, it is proved that the above problems have a nontrivial solution under suitable assumptions of f(x, t).
文摘The three species Lotka-Volterra periodic model with two predators and one prey is considered.A set of easily verifiable sufficient conditions is obtained.Finallyt an example is given to illustrate the feasibility of these conditions.
基金supported by Program for Changjiang Scholars and Innovative Research Team in University,NSFC of China(11371085 and 11201008)the Ph.D.Programs Foundation of Ministry of China(200918)
文摘In this article, we consider a stochastic SIR model and show that the distributions of the solutions of the system are absolutely continuous. Furthermore, we analyze long-time behaviour of densities of the distributions of the solution. We prove that the densities can converge in L1 to an invariant density.
基金supported by National Natural Science Foundation of China(11171303,61273093)the Specialized Research Fund for the Doctor Program of Higher Education(20090101110020)
文摘It is well-known that the complete convergence theorem for i.i.d, random vari- ables has been an active topic since the famous work done by Hsu and Robbins [6]. Chow [4] obtained a moment version of Hsu and Robbins series. However, the series tends to infinity whenever c goes to zero, so it is of interest to investigate the asymptotic behavior of the series as e goes to zero. This note gives some limit theorems of the series generated by moments for NA random variables.