Boundary value problem; for third-order ordinary differential equations with turning points are studied as follows : epsilon gamma ' ' + f(x ; epsilon) gamma ' + g(x ; epsilon) gamma ' +h(x ; epsilon) ...Boundary value problem; for third-order ordinary differential equations with turning points are studied as follows : epsilon gamma ' ' + f(x ; epsilon) gamma ' + g(x ; epsilon) gamma ' +h(x ; epsilon) gamma = 0 (- a < x < b, 0 epsilon 1), where f(x ; 0) has several multiple zero points in ( - n, b). the necessary conditions for exhibiting resonance is given, and the uniformly valid asymptotic solutions and the estimations of remainder terms are obtained.展开更多
A new method is applied to study the asymptotic behavior of solutions of boundary value problems for a class of systems of nonlinear differential equations u' = nu, epsilon nu' + f(x, u, u')nu' - g(x, ...A new method is applied to study the asymptotic behavior of solutions of boundary value problems for a class of systems of nonlinear differential equations u' = nu, epsilon nu' + f(x, u, u')nu' - g(x, u, u') nu = 0 (0 < epsilon much less than 1). The asymptotic expansions of solutions are constructed, the remainders are estimated. The former works are improved and generalized.展开更多
The self-similarity solutions of the Navier-Stokes equations are constructed for an incompressible laminar flow through a uniformly porous channel with retractable walls under a transverse magnetic field. The flow is ...The self-similarity solutions of the Navier-Stokes equations are constructed for an incompressible laminar flow through a uniformly porous channel with retractable walls under a transverse magnetic field. The flow is driven by the expanding or contracting walls with different permeability. The velocities of the asymmetric flow at the upper and lower walls are different in not only the magnitude but also the direction. The asymptotic solutions are well constructed with the method of boundary layer correction in two cases with large Reynolds numbers, i.e., both walls of the channel are with suction, and one of the walls is with injection while the other one is with suction. For small Reynolds number cases, the double perturbation method is used to construct the asymptotic solution. All the asymptotic results are finally verified by numerical results.展开更多
By using “the method of modified two-variable”,“the method of mixing perturbation” and introducing four small parameters,the problem of the nonlinear unsymmetrical bending for orthotropic rectangular thin plate wi...By using “the method of modified two-variable”,“the method of mixing perturbation” and introducing four small parameters,the problem of the nonlinear unsymmetrical bending for orthotropic rectangular thin plate with linear variable thickness is studied.And the uniformly valid asymptotic solution of Nth-order for ε_1 and Mth-order for ε_2 of the deflection functions and stress function are obtained.展开更多
A class of nonlinear global climate oscillation models is considered. Using perturbation theory and its methods, solutions to the asymptotic expansions of some related problems are constructed. These asymptotic expans...A class of nonlinear global climate oscillation models is considered. Using perturbation theory and its methods, solutions to the asymptotic expansions of some related problems are constructed. These asymptotic expansions of the solutions for the original problem possess a higher approximation. The perturbed asymptotic method is an analyti cmethod.展开更多
In this paper we study the asymptotic expansions of the solutions for a class of second order ordinary differential equations with slowly varying coefficients. The defect of the known works on these problems is noted,...In this paper we study the asymptotic expansions of the solutions for a class of second order ordinary differential equations with slowly varying coefficients. The defect of the known works on these problems is noted, and the results in [1 - 4] are improved and extended by means of the modified method of multiple scales.展开更多
The soliton solutions with a double spectral parameter for the principal chiral field are derived by Darboux transformation. The asymptotic behavior of the solutions as time tends to infinity is obtained and the speed...The soliton solutions with a double spectral parameter for the principal chiral field are derived by Darboux transformation. The asymptotic behavior of the solutions as time tends to infinity is obtained and the speeds of the peaks in the asymptotic solutions are not constants.展开更多
In this paper Lou's direct perturbation method is applied to the perturbed coupled nonlinear Schrodinger equations to obtain their asymptotical solutions, which include not only the zero-order solutions but also the ...In this paper Lou's direct perturbation method is applied to the perturbed coupled nonlinear Schrodinger equations to obtain their asymptotical solutions, which include not only the zero-order solutions but also the first-order modifications. Based on the asymptotical solutions, the effects of perturbations on soliton parameters and the collision between two solitons are then discussed in brief. Furthermore, we directly simulate the perturbed coupled nonlinear SchrSdinger equations by split-step Fourier method to check the validity of the direct perturbation method. It turns out that our analytical results are well supported by the numerical calculations.展开更多
For functional difference equations with unbounded delay,we characterized the existence of totally stable and asymptotically almost periodic solution by using stability properties of a bounded solution in a certain li...For functional difference equations with unbounded delay,we characterized the existence of totally stable and asymptotically almost periodic solution by using stability properties of a bounded solution in a certain limiting equation.展开更多
We study the long-time asymptotic behaviour of viscosity solutions u(x,t)of the Hamilton-Jacobi equation u_(t)(x,t)+H(x,u(x,t),Du(x,t))=0 in T^(n)×(0,∞)with a PDE approach,where H=H(x,u,p)is coercive in p,non-de...We study the long-time asymptotic behaviour of viscosity solutions u(x,t)of the Hamilton-Jacobi equation u_(t)(x,t)+H(x,u(x,t),Du(x,t))=0 in T^(n)×(0,∞)with a PDE approach,where H=H(x,u,p)is coercive in p,non-decreasing in u and strictly convex in(u,p),and establish the uniform convergence of u(x,t)to an asymptotic solution u_(∞)(x)as t→∞.Moreover,u_(∞) is a viscosity solution of Hamilton-Jacobi equation H(x,u(x),Du(x))=0.展开更多
In this article, we will derive an equality, where the Taylor series expansion around ε= 0 for any asymptotical analytical solution of the perturbed partial differential equation (PDE) with perturbing parameter e m...In this article, we will derive an equality, where the Taylor series expansion around ε= 0 for any asymptotical analytical solution of the perturbed partial differential equation (PDE) with perturbing parameter e must be admitted. By making use of the equality, we may obtain a transformation, which directly map the analytical solutions of a given unperturbed PDE to the asymptotical analytical solutions of the corresponding perturbed one. The notion of Lie-Bgcklund symmetries is introduced in order to obtain more transformations. Hence, we can directly create more transformations in virtue of known Lie-Bgcklund symmetries and recursion operators of corresponding unperturbed equation. The perturbed Burgers equation and the perturbed Korteweg-de Vries (KdV) equation are used as examples.展开更多
This work studies the asymptotic formulas for the solutions of the Sturm-Liouville equation with the polynomial dependence in the spectral parameter. Using these asymptotic formulas it is proved some trace formulas fo...This work studies the asymptotic formulas for the solutions of the Sturm-Liouville equation with the polynomial dependence in the spectral parameter. Using these asymptotic formulas it is proved some trace formulas for the eigenvalues of a simple boundary problem generated in a finite interval by the considered Sturm-Liouville equation.展开更多
The main purpose of this paper is to discuss the existence and asymptotic behavior of solutions for [GRAPHICS] and for which the sufficient conditions of asymptotic behavior are obtained and the restriction for the ex...The main purpose of this paper is to discuss the existence and asymptotic behavior of solutions for [GRAPHICS] and for which the sufficient conditions of asymptotic behavior are obtained and the restriction for the existence is reduced.展开更多
A sufficient condition is obtained for every solution of the nonlinear retarded differential equationx'(t) +f(t,x(t-τ)) =0to tend to zero as t→∞ , which extends and improves the corresponding results obtained b...A sufficient condition is obtained for every solution of the nonlinear retarded differential equationx'(t) +f(t,x(t-τ)) =0to tend to zero as t→∞ , which extends and improves the corresponding results obtained by Ladas, Sficas and Gopalsamy.展开更多
This paper deals with reaction-diffusion system with nonlocal source. It is proved that there exists a unique classical solution and the solution either exists globally or blows up in finite time. Furthermore, its blo...This paper deals with reaction-diffusion system with nonlocal source. It is proved that there exists a unique classical solution and the solution either exists globally or blows up in finite time. Furthermore, its blow-up set and asymptotic behavior are obtained provided that the solution blows up in finite time.展开更多
The process of contaminant transport is a problem of multicomponent and multiphase flow in unsaturated zone. Under the presupposition that gas existence affects water transport, a coupled mathematical model of contami...The process of contaminant transport is a problem of multicomponent and multiphase flow in unsaturated zone. Under the presupposition that gas existence affects water transport, a coupled mathematical model of contaminant transport in unsaturated zone has been established based on fluid_solid interaction mechanics theory. The asymptotical solutions to the nonlinear coupling mathematical model were accomplished by the perturbation and integral transformation method. The distribution law of pore pressure, pore water velocity and contaminant concentration in unsaturated zone has been presented under the conditions of with coupling and without coupling gas phase. An example problem was used to provide a quantitative verification and validation of the model. The asymptotical solution was compared with Faust model solution. The comparison results show reasonable agreement between asymptotical solution and Faust solution, and the gas effect and media deformation has a large impact on the contaminant transport. The theoretical basis is provided for forecasting contaminant transport and the determination of the relationship among pressure_saturation_permeability in laboratory.展开更多
A weak nonlinear model of a two-layer barotropic ocean with Rayleigh dissipation is built.The analytic asymptotic solution is derived in the mid-latitude stationary wind field,and the physical meaning of the correspon...A weak nonlinear model of a two-layer barotropic ocean with Rayleigh dissipation is built.The analytic asymptotic solution is derived in the mid-latitude stationary wind field,and the physical meaning of the corresponding problem is discussed.展开更多
Under appropriate conditions, with the perturbation method and the theory of differential inequalities, a class of weakly nonlinear singularly perturbed reaction diffusion problem is considered. The existence of solut...Under appropriate conditions, with the perturbation method and the theory of differential inequalities, a class of weakly nonlinear singularly perturbed reaction diffusion problem is considered. The existence of solution of the original problem is proved by constructing the auxiliary functions. The uniformly valid asymptotic expansions of the solution for arbitrary mth order approximation are obtained through constructing the formal solutions of the original problem, expanding the nonlinear terms to the power in small parameter ε and comparing the coefficient for the same powers of ε. Finally, an example is provided, resulting in the error of 0(ε^2).展开更多
The ENSO is an interannual phenomenon involved in the tropical Pacific ocean-atmosphere interaction. In this article, we create an asymptotic solving method for the nonlinear system of the ENSO model. The asymptotic s...The ENSO is an interannual phenomenon involved in the tropical Pacific ocean-atmosphere interaction. In this article, we create an asymptotic solving method for the nonlinear system of the ENSO model. The asymptotic solution is obtained. And then we can furnish weather forecasts theoretically and other behaviors and rules for the atmosphere- ocean oscillator of the ENSO.展开更多
This paper consider a class of perturbed mechanism for the western boundary undercurrents in the Pacific. The model of generalized governing equations is studied. Using the perturbation method, it constructs the asymp...This paper consider a class of perturbed mechanism for the western boundary undercurrents in the Pacific. The model of generalized governing equations is studied. Using the perturbation method, it constructs the asymptotic solution of the model. And the accuracy of asymptotic solution is proved by the theory of differential inequalities. Thus the uniformly valid asymptotic expansions of the solution are obtained.展开更多
文摘Boundary value problem; for third-order ordinary differential equations with turning points are studied as follows : epsilon gamma ' ' + f(x ; epsilon) gamma ' + g(x ; epsilon) gamma ' +h(x ; epsilon) gamma = 0 (- a < x < b, 0 epsilon 1), where f(x ; 0) has several multiple zero points in ( - n, b). the necessary conditions for exhibiting resonance is given, and the uniformly valid asymptotic solutions and the estimations of remainder terms are obtained.
文摘A new method is applied to study the asymptotic behavior of solutions of boundary value problems for a class of systems of nonlinear differential equations u' = nu, epsilon nu' + f(x, u, u')nu' - g(x, u, u') nu = 0 (0 < epsilon much less than 1). The asymptotic expansions of solutions are constructed, the remainders are estimated. The former works are improved and generalized.
基金Project supported by the National Natural Science Foundation of China(Nos.91430106 and11771040)the Fundamental Research Funds for the Central Universities of China(No.06500073)
文摘The self-similarity solutions of the Navier-Stokes equations are constructed for an incompressible laminar flow through a uniformly porous channel with retractable walls under a transverse magnetic field. The flow is driven by the expanding or contracting walls with different permeability. The velocities of the asymmetric flow at the upper and lower walls are different in not only the magnitude but also the direction. The asymptotic solutions are well constructed with the method of boundary layer correction in two cases with large Reynolds numbers, i.e., both walls of the channel are with suction, and one of the walls is with injection while the other one is with suction. For small Reynolds number cases, the double perturbation method is used to construct the asymptotic solution. All the asymptotic results are finally verified by numerical results.
文摘By using “the method of modified two-variable”,“the method of mixing perturbation” and introducing four small parameters,the problem of the nonlinear unsymmetrical bending for orthotropic rectangular thin plate with linear variable thickness is studied.And the uniformly valid asymptotic solution of Nth-order for ε_1 and Mth-order for ε_2 of the deflection functions and stress function are obtained.
基金supported by the support of the National Natural Science Foundation of China (Grant No. 40676016)the State Key Development Program for Basic Research of China (Grant Nos. 2003CB415101-03, 2004CB418304)+1 种基金the Key of the Knowledge Innovation of the Chinese Academy of Sciences (Grant No. KZCX3-SW-221)in part, by the E-Institutes of Shanghai Municipal Education Commission (Grant No. E03004)
文摘A class of nonlinear global climate oscillation models is considered. Using perturbation theory and its methods, solutions to the asymptotic expansions of some related problems are constructed. These asymptotic expansions of the solutions for the original problem possess a higher approximation. The perturbed asymptotic method is an analyti cmethod.
基金The Project Supported by the National Natural Science Foundation of China
文摘In this paper we study the asymptotic expansions of the solutions for a class of second order ordinary differential equations with slowly varying coefficients. The defect of the known works on these problems is noted, and the results in [1 - 4] are improved and extended by means of the modified method of multiple scales.
文摘The soliton solutions with a double spectral parameter for the principal chiral field are derived by Darboux transformation. The asymptotic behavior of the solutions as time tends to infinity is obtained and the speeds of the peaks in the asymptotic solutions are not constants.
基金Project supported by the National Natural Science Foundation of China (Grant No 10575087) and the Natural Science Foundation of Zheiiang Province of China (Grant No 102053). 0ne of the authors (Lin) would like to thank Prof. Sen-yue Lou for many useful discussions.
文摘In this paper Lou's direct perturbation method is applied to the perturbed coupled nonlinear Schrodinger equations to obtain their asymptotical solutions, which include not only the zero-order solutions but also the first-order modifications. Based on the asymptotical solutions, the effects of perturbations on soliton parameters and the collision between two solitons are then discussed in brief. Furthermore, we directly simulate the perturbed coupled nonlinear SchrSdinger equations by split-step Fourier method to check the validity of the direct perturbation method. It turns out that our analytical results are well supported by the numerical calculations.
文摘For functional difference equations with unbounded delay,we characterized the existence of totally stable and asymptotically almost periodic solution by using stability properties of a bounded solution in a certain limiting equation.
基金the National Natural Science Foundation of China(11971344)Jiangsu Graduate Science Innovation Project(KYCX20-2746)。
文摘We study the long-time asymptotic behaviour of viscosity solutions u(x,t)of the Hamilton-Jacobi equation u_(t)(x,t)+H(x,u(x,t),Du(x,t))=0 in T^(n)×(0,∞)with a PDE approach,where H=H(x,u,p)is coercive in p,non-decreasing in u and strictly convex in(u,p),and establish the uniform convergence of u(x,t)to an asymptotic solution u_(∞)(x)as t→∞.Moreover,u_(∞) is a viscosity solution of Hamilton-Jacobi equation H(x,u(x),Du(x))=0.
基金0ne of the authors (H.Z. Liu) would like to express his sincere thanks to Dr. Shou-Feng Shen for his continuous encouragement and warm-hearted help.
文摘In this article, we will derive an equality, where the Taylor series expansion around ε= 0 for any asymptotical analytical solution of the perturbed partial differential equation (PDE) with perturbing parameter e must be admitted. By making use of the equality, we may obtain a transformation, which directly map the analytical solutions of a given unperturbed PDE to the asymptotical analytical solutions of the corresponding perturbed one. The notion of Lie-Bgcklund symmetries is introduced in order to obtain more transformations. Hence, we can directly create more transformations in virtue of known Lie-Bgcklund symmetries and recursion operators of corresponding unperturbed equation. The perturbed Burgers equation and the perturbed Korteweg-de Vries (KdV) equation are used as examples.
文摘This work studies the asymptotic formulas for the solutions of the Sturm-Liouville equation with the polynomial dependence in the spectral parameter. Using these asymptotic formulas it is proved some trace formulas for the eigenvalues of a simple boundary problem generated in a finite interval by the considered Sturm-Liouville equation.
文摘The main purpose of this paper is to discuss the existence and asymptotic behavior of solutions for [GRAPHICS] and for which the sufficient conditions of asymptotic behavior are obtained and the restriction for the existence is reduced.
文摘A sufficient condition is obtained for every solution of the nonlinear retarded differential equationx'(t) +f(t,x(t-τ)) =0to tend to zero as t→∞ , which extends and improves the corresponding results obtained by Ladas, Sficas and Gopalsamy.
文摘This paper deals with reaction-diffusion system with nonlocal source. It is proved that there exists a unique classical solution and the solution either exists globally or blows up in finite time. Furthermore, its blow-up set and asymptotic behavior are obtained provided that the solution blows up in finite time.
文摘The process of contaminant transport is a problem of multicomponent and multiphase flow in unsaturated zone. Under the presupposition that gas existence affects water transport, a coupled mathematical model of contaminant transport in unsaturated zone has been established based on fluid_solid interaction mechanics theory. The asymptotical solutions to the nonlinear coupling mathematical model were accomplished by the perturbation and integral transformation method. The distribution law of pore pressure, pore water velocity and contaminant concentration in unsaturated zone has been presented under the conditions of with coupling and without coupling gas phase. An example problem was used to provide a quantitative verification and validation of the model. The asymptotical solution was compared with Faust model solution. The comparison results show reasonable agreement between asymptotical solution and Faust solution, and the gas effect and media deformation has a large impact on the contaminant transport. The theoretical basis is provided for forecasting contaminant transport and the determination of the relationship among pressure_saturation_permeability in laboratory.
基金Project supported by the National Basic Research Program of China (Grant No. 2011CB403501)the National Natural Science Foundation of China (GrantNos. 41175058,41275062,and 11202106)
文摘A weak nonlinear model of a two-layer barotropic ocean with Rayleigh dissipation is built.The analytic asymptotic solution is derived in the mid-latitude stationary wind field,and the physical meaning of the corresponding problem is discussed.
基金supported by the E-Institutes of Shanghai Municipal Education Commission (Grant No.E03004)
文摘Under appropriate conditions, with the perturbation method and the theory of differential inequalities, a class of weakly nonlinear singularly perturbed reaction diffusion problem is considered. The existence of solution of the original problem is proved by constructing the auxiliary functions. The uniformly valid asymptotic expansions of the solution for arbitrary mth order approximation are obtained through constructing the formal solutions of the original problem, expanding the nonlinear terms to the power in small parameter ε and comparing the coefficient for the same powers of ε. Finally, an example is provided, resulting in the error of 0(ε^2).
基金Project supported by the National Natural Science Foundation of China (Grant No. 40876010), the Strategic Priority Research Program-Climate Change: Carbon Budget and Relevant Issues of the Chinese Academy of Sciences (Grant No. XDA01020304), the Natural Science Foundation of Zhejiang Province, China (Grant No. Y6110502), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2011042), and the Natural Science Foundation from the Education Bureau of Anhui Province, China (Grant No. KJ2011A135).
文摘The ENSO is an interannual phenomenon involved in the tropical Pacific ocean-atmosphere interaction. In this article, we create an asymptotic solving method for the nonlinear system of the ENSO model. The asymptotic solution is obtained. And then we can furnish weather forecasts theoretically and other behaviors and rules for the atmosphere- ocean oscillator of the ENSO.
基金supported by the National Natural Science Foundation of China(Grant Nos 40676016 and 40876010)the Knowledge Innovation Project of Chinese Academy of Sciences(Grant No KZCX2-YW-Q03-08)LASG State Key Laboratory Special fund and E-Institutes of Shanghai Municipal Education Commission of China(Grant No E03004)
文摘This paper consider a class of perturbed mechanism for the western boundary undercurrents in the Pacific. The model of generalized governing equations is studied. Using the perturbation method, it constructs the asymptotic solution of the model. And the accuracy of asymptotic solution is proved by the theory of differential inequalities. Thus the uniformly valid asymptotic expansions of the solution are obtained.