This paper investigates the tracking control problem for unmanned underwater vehicles(UUVs)systems with sensor faults,input saturation,and external disturbance caused by waves and ocean currents.An active sensor fault...This paper investigates the tracking control problem for unmanned underwater vehicles(UUVs)systems with sensor faults,input saturation,and external disturbance caused by waves and ocean currents.An active sensor fault-tolerant control scheme is proposed.First,the developed method only requires the inertia matrix of the UUV,without other dynamic information,and can handle both additive and multiplicative sensor faults.Subsequently,an adaptive fault-tolerant controller is designed to achieve asymptotic tracking control of the UUV by employing robust integral of the sign of error feedback method.It is shown that the effect of sensor faults is online estimated and compensated by an adaptive estimator.With the proposed controller,the tracking error and estimation error can asymptotically converge to zero.Finally,simulation results are performed to demonstrate the effectiveness of the proposed method.展开更多
In this paper,indirect adaptive state feedback control schemes are developed to solve the robust fault-tolerant control (FTC) design problem of actuator fault and perturbation compensations for linear time-invariant...In this paper,indirect adaptive state feedback control schemes are developed to solve the robust fault-tolerant control (FTC) design problem of actuator fault and perturbation compensations for linear time-invariant systems.A more general and practical model of actuator faults is presented.While both eventual faults on actuators and perturbations are unknown,the adaptive schemes are addressed to estimate the lower and upper bounds of actuator-stuck faults and perturbations online,as well as to estimate control effectiveness on actuators.Thus,on the basis of the information from adaptive schemes,an adaptive robust state feed-back controller is designed to compensate the effects of faults and perturbations automatically.According to Lyapunov stability theory,it is shown that the robust adaptive closed-loop systems can be ensured to be asymptotically stable under the influence of actuator faults and bounded perturbations.An example is provided to further illustrate the fault compensation effectiveness.展开更多
The problem of robust stabilization for nonlinear systems with partially known uncertainties is considered in this paper. The required information about uncertainties in the system is merely that the uncertainties are...The problem of robust stabilization for nonlinear systems with partially known uncertainties is considered in this paper. The required information about uncertainties in the system is merely that the uncertainties are bounded, but the upper bounds are incompletely known. This paper can be viewed as an extension of the work in reference [1]. To compensate the uncertainties, an adaptive robust controller based on Lyapunov method is proposed and the design algorithm is also suggested. Compared with some previous controllers which can only ensure ultimate uniform boundedness of the systems, the controller given in the paper can make sure that the obtained closed-loop system is asymptotically stable in the large. Simulations show that the method presented is available and effective.展开更多
This paper studies the global robust stabilization problem for a class of feedforward systems that is subject to both dynamic and time-varying static uncertainties. A small gain theorem-based bottom-up recursive desig...This paper studies the global robust stabilization problem for a class of feedforward systems that is subject to both dynamic and time-varying static uncertainties. A small gain theorem-based bottom-up recursive design is developed for constructing a nested saturation control law. At each recursion, two versions of small gain theorem with restrictions are employed to establish the global attractiveness and local stability of the closed-loop system at the equilibrium point, respectively.展开更多
基金the National Natural Science Foundation of China(62303012,62236002,61911004,62303008)。
文摘This paper investigates the tracking control problem for unmanned underwater vehicles(UUVs)systems with sensor faults,input saturation,and external disturbance caused by waves and ocean currents.An active sensor fault-tolerant control scheme is proposed.First,the developed method only requires the inertia matrix of the UUV,without other dynamic information,and can handle both additive and multiplicative sensor faults.Subsequently,an adaptive fault-tolerant controller is designed to achieve asymptotic tracking control of the UUV by employing robust integral of the sign of error feedback method.It is shown that the effect of sensor faults is online estimated and compensated by an adaptive estimator.With the proposed controller,the tracking error and estimation error can asymptotically converge to zero.Finally,simulation results are performed to demonstrate the effectiveness of the proposed method.
基金supported by the Funds for Creative Research Groups of China(No.60821063)National 973 Program of China(No.2009CB320604)+2 种基金the Funds of National Science of China(No.60974043)the 111 Project(No.B08015)the Fundamental Research Funds for the Central Universities(No.N090604001,N090604002)
文摘In this paper,indirect adaptive state feedback control schemes are developed to solve the robust fault-tolerant control (FTC) design problem of actuator fault and perturbation compensations for linear time-invariant systems.A more general and practical model of actuator faults is presented.While both eventual faults on actuators and perturbations are unknown,the adaptive schemes are addressed to estimate the lower and upper bounds of actuator-stuck faults and perturbations online,as well as to estimate control effectiveness on actuators.Thus,on the basis of the information from adaptive schemes,an adaptive robust state feed-back controller is designed to compensate the effects of faults and perturbations automatically.According to Lyapunov stability theory,it is shown that the robust adaptive closed-loop systems can be ensured to be asymptotically stable under the influence of actuator faults and bounded perturbations.An example is provided to further illustrate the fault compensation effectiveness.
文摘The problem of robust stabilization for nonlinear systems with partially known uncertainties is considered in this paper. The required information about uncertainties in the system is merely that the uncertainties are bounded, but the upper bounds are incompletely known. This paper can be viewed as an extension of the work in reference [1]. To compensate the uncertainties, an adaptive robust controller based on Lyapunov method is proposed and the design algorithm is also suggested. Compared with some previous controllers which can only ensure ultimate uniform boundedness of the systems, the controller given in the paper can make sure that the obtained closed-loop system is asymptotically stable in the large. Simulations show that the method presented is available and effective.
基金supported by the Research Grants Council of the Hong Kong Special Administration Region (No.412006)
文摘This paper studies the global robust stabilization problem for a class of feedforward systems that is subject to both dynamic and time-varying static uncertainties. A small gain theorem-based bottom-up recursive design is developed for constructing a nested saturation control law. At each recursion, two versions of small gain theorem with restrictions are employed to establish the global attractiveness and local stability of the closed-loop system at the equilibrium point, respectively.