Induction and secretion of acid phosphatases (APases) is thought to be an adaptive mechanism that helps plants survive and grow under phosphate (Pi) deprivation, in Arabidopsis, there are 29 purple acid phosphata...Induction and secretion of acid phosphatases (APases) is thought to be an adaptive mechanism that helps plants survive and grow under phosphate (Pi) deprivation, in Arabidopsis, there are 29 purple acid phosphatase (AtPAP) genes. To systematically investigate the roles of different AtPAPs, we first identified knockout or knock-down T-DNA lines for all 29 AtPAP genes. Using these atpap mutants combined with in-gel and quantitative APase enzyme assays, we demonstrated that AtPAP12 and AtPAP26 are two major intracellular and secreted APases in Arabidopsis while AtPAPlo is mainly a secreted APase. On Pi-deficient (P-) medium or P- medium supplemented with the organophosphates ADP and fructose-6-phosphate (Fru-6-P), growth of atpaplo was significantly reduced whereas growth of atpap12 was only moderately reduced, and growth of atpap26 was nearly equal to that of the wild type (WT). Overexpression of the AtPAP12 or AtPAP26 gene, however, caused plants to grow better on P- or P- medium supplemented with ADP or Fru-6-P. Interest-ingly, Pi levels are essentially the same for the WT and overexpressing lines, although these two types of plants have significantly different growth phenotypes. These results suggest that the APases may have other roles besides enhancing internal Pi recycling or releasing Pi from external organophosphates for plant uptake.展开更多
Transgenic soybean plants overexpressing the Arabidopsis purple acid phosphatase gene AtPAP15 (OXp) or the soybean expansin gene GmEXPB2 (OXe) can improve phosphorous (P) efficiency in pure culture by increasing...Transgenic soybean plants overexpressing the Arabidopsis purple acid phosphatase gene AtPAP15 (OXp) or the soybean expansin gene GmEXPB2 (OXe) can improve phosphorous (P) efficiency in pure culture by increasing Apase secretion or changing root morphology. In this study, soybean‐soybean mixed cultures were employed to il uminate P acquisition among plants in mixed stands of transgenic and wild‐type soybean. Our results showed that transgenic soybean plants were much more competitive, and had greater growth and P uptake than wild‐type soybean in mixed culture in both low P calcareous and acid soils. Furthermore, OXe plants had an advantage in calcareous soils when mixed with OXp, whereas the latter performed much better in acid soils. In soybean‐maize mixed culture, transgenic soybean had no impact on maize growth compared to controls in both acid and calcareous soils with different P conditions. As for soybean in mixed culture, OXp plants had no significant advantages regardless of P availability or soil type, while P efficiency improved in OXe in calcareous soils compared to controls. These results imply that physiological traits could be easily affected by the mixed maize. Transgenic soybean plants with enhanced root traits had more competitive advantages than those with improved root physiology in mixed culture.展开更多
基金supported by the National Natural Science Foundation of China (31370290 to D.L. and 30971554 to X.D.)the Ministry of Agriculture of China (2014ZX0800932B to D.L.)
文摘Induction and secretion of acid phosphatases (APases) is thought to be an adaptive mechanism that helps plants survive and grow under phosphate (Pi) deprivation, in Arabidopsis, there are 29 purple acid phosphatase (AtPAP) genes. To systematically investigate the roles of different AtPAPs, we first identified knockout or knock-down T-DNA lines for all 29 AtPAP genes. Using these atpap mutants combined with in-gel and quantitative APase enzyme assays, we demonstrated that AtPAP12 and AtPAP26 are two major intracellular and secreted APases in Arabidopsis while AtPAPlo is mainly a secreted APase. On Pi-deficient (P-) medium or P- medium supplemented with the organophosphates ADP and fructose-6-phosphate (Fru-6-P), growth of atpaplo was significantly reduced whereas growth of atpap12 was only moderately reduced, and growth of atpap26 was nearly equal to that of the wild type (WT). Overexpression of the AtPAP12 or AtPAP26 gene, however, caused plants to grow better on P- or P- medium supplemented with ADP or Fru-6-P. Interest-ingly, Pi levels are essentially the same for the WT and overexpressing lines, although these two types of plants have significantly different growth phenotypes. These results suggest that the APases may have other roles besides enhancing internal Pi recycling or releasing Pi from external organophosphates for plant uptake.
基金supported by National Key Basic Research Special Funds of China (2011CB100301)
文摘Transgenic soybean plants overexpressing the Arabidopsis purple acid phosphatase gene AtPAP15 (OXp) or the soybean expansin gene GmEXPB2 (OXe) can improve phosphorous (P) efficiency in pure culture by increasing Apase secretion or changing root morphology. In this study, soybean‐soybean mixed cultures were employed to il uminate P acquisition among plants in mixed stands of transgenic and wild‐type soybean. Our results showed that transgenic soybean plants were much more competitive, and had greater growth and P uptake than wild‐type soybean in mixed culture in both low P calcareous and acid soils. Furthermore, OXe plants had an advantage in calcareous soils when mixed with OXp, whereas the latter performed much better in acid soils. In soybean‐maize mixed culture, transgenic soybean had no impact on maize growth compared to controls in both acid and calcareous soils with different P conditions. As for soybean in mixed culture, OXp plants had no significant advantages regardless of P availability or soil type, while P efficiency improved in OXe in calcareous soils compared to controls. These results imply that physiological traits could be easily affected by the mixed maize. Transgenic soybean plants with enhanced root traits had more competitive advantages than those with improved root physiology in mixed culture.