Plant peroxidase (POD) belongs to multigene family, which not is only one of the important enzymes responsible for the removal of active oxygen radicals, but also participates in a variety of physiological and bioch...Plant peroxidase (POD) belongs to multigene family, which not is only one of the important enzymes responsible for the removal of active oxygen radicals, but also participates in a variety of physiological and biochemical processes and plays a crucial role in the maintenance of plant growth and development. In this study, the structures and functions of proteins encoded by 73 gene of POD family in Arabidopsis were analyzed with bioinformatics method, including the number of amino acids, isoelectric point, transmemberane domains, signal peptides, secondary structures and phosphorylation sites, and the phylogenic trees with and without signal peptides were constructed by using Mega4.0 software, to investigate the structural characteristics. In addition, the structures of AtPER members were analyzed, to reveal the relationship between the structures and functions, thereby providing theoretical basis for the research of plant oxidative stress resistance.展开更多
基金Supported by National Natural Science Foundation of China(31070361)the Fundamental Research Funds for the Central Universities(0910KYZY43,1112KYQN31)+1 种基金"985 Project"from Minzu University of China(MUC98504-14)Scientific Research Project from State Ethnic Affairs Commission(10ZY01)~~
文摘Plant peroxidase (POD) belongs to multigene family, which not is only one of the important enzymes responsible for the removal of active oxygen radicals, but also participates in a variety of physiological and biochemical processes and plays a crucial role in the maintenance of plant growth and development. In this study, the structures and functions of proteins encoded by 73 gene of POD family in Arabidopsis were analyzed with bioinformatics method, including the number of amino acids, isoelectric point, transmemberane domains, signal peptides, secondary structures and phosphorylation sites, and the phylogenic trees with and without signal peptides were constructed by using Mega4.0 software, to investigate the structural characteristics. In addition, the structures of AtPER members were analyzed, to reveal the relationship between the structures and functions, thereby providing theoretical basis for the research of plant oxidative stress resistance.