Ribosome biogenesis,which takes place mainly in the nucleolus,involves coordinated expression of preribosomal RNAs(pre-rRNAs)and ribosomal proteins,pre-rRNA processing,and subunit assembly with the aid of numerous ass...Ribosome biogenesis,which takes place mainly in the nucleolus,involves coordinated expression of preribosomal RNAs(pre-rRNAs)and ribosomal proteins,pre-rRNA processing,and subunit assembly with the aid of numerous assembly factors.Our previous study showed that the Arabidopsis thaliana protein arginine methyltransferase AtPRMT3 regulates pre-rRNA processing;however,the underlying molecular mechanism remains unknown.Here,we report that AtPRMT3 interacts with Ribosomal Protein S2(RPS2),facilitating processing of the 90S/Small Subunit(SSU)processome and repressing nucleolar stress.We isolated an intragenic suppressor of atprmt3-2,which rescues the developmental defects of atprmt3-2 while produces a putative truncated AtPRMT3 protein bearing the entire N-terminus but lacking an intact enzymatic activity domain We further identified RPS2 as an interacting partner of AtPRMT3,and found that loss-of-function rps2a2b mutants were phenotypically reminiscent of atprmt3,showing pleiotropic developmental defects and aberrant pre-rRNA processing.RPS2B binds directly to pre-rRNAs in the nucleus,and such binding is enhanced in atprmt3-2.Consistently,multiple components of the 90S/SSU processome were more enriched by RPS2B in atprmt3-2,which accounts for early pre-rRNA processing defects and results in nucleolar stress.Collectively,our study uncovered a novel mechanism by which AtPRMT3 cooperates with RPS2B to facilitate the dynamic assembly/disassembly of the 90S/SSU processome during ribosome biogenesis and repress nucleolar stress.展开更多
基金This work was supported by grants from the National Natural Science Foundation of China(31788103 and 91540203 to X.Cao,31770874 to C.L.,31900932 to R.H.,and 31701096 to J.S.),Chinathe Strategic Priority Research Program of Chinese Academy of Sciences(XDB27030201 to X.Cao),China+1 种基金the Key Research Program of Frontier Sciences of Chinese Academy of Sciences(QYZDY-SSW-SMC022 to X.Cao),Chinathe State Key Laboratory of Plant Genomics,China.
文摘Ribosome biogenesis,which takes place mainly in the nucleolus,involves coordinated expression of preribosomal RNAs(pre-rRNAs)and ribosomal proteins,pre-rRNA processing,and subunit assembly with the aid of numerous assembly factors.Our previous study showed that the Arabidopsis thaliana protein arginine methyltransferase AtPRMT3 regulates pre-rRNA processing;however,the underlying molecular mechanism remains unknown.Here,we report that AtPRMT3 interacts with Ribosomal Protein S2(RPS2),facilitating processing of the 90S/Small Subunit(SSU)processome and repressing nucleolar stress.We isolated an intragenic suppressor of atprmt3-2,which rescues the developmental defects of atprmt3-2 while produces a putative truncated AtPRMT3 protein bearing the entire N-terminus but lacking an intact enzymatic activity domain We further identified RPS2 as an interacting partner of AtPRMT3,and found that loss-of-function rps2a2b mutants were phenotypically reminiscent of atprmt3,showing pleiotropic developmental defects and aberrant pre-rRNA processing.RPS2B binds directly to pre-rRNAs in the nucleus,and such binding is enhanced in atprmt3-2.Consistently,multiple components of the 90S/SSU processome were more enriched by RPS2B in atprmt3-2,which accounts for early pre-rRNA processing defects and results in nucleolar stress.Collectively,our study uncovered a novel mechanism by which AtPRMT3 cooperates with RPS2B to facilitate the dynamic assembly/disassembly of the 90S/SSU processome during ribosome biogenesis and repress nucleolar stress.