Objective:Mitotic arrest-deficient protein 1(MAD1)is a kinetochore protein essential for the mitotic spindle checkpoint.Proteomic studies have indicated that MAD1 is a component of the DNA damage response(DDR)pathway....Objective:Mitotic arrest-deficient protein 1(MAD1)is a kinetochore protein essential for the mitotic spindle checkpoint.Proteomic studies have indicated that MAD1 is a component of the DNA damage response(DDR)pathway.However,whether and how MAD1 might be directly involved in the DDR is largely unknown.Methods:We ectopically expressed the wild type,or a phosphorylation-site--mutated form of MAD1 in MAD1 knockdown cells to look for complementation effects.We used the comet assay,colony formation assay,immunofluorescence staining,and flow cytometry to assess the DDR,radiosensitivity,and the G2/M checkpoint.We employed co-immunoprecipitation followed by mass spectrometry to identify MAD1 interacting proteins.Data were analyzed using the unpaired Student'st-test.Results:We showed that MAD1 was required for an optimal DDR,as knocking down MAD1 resulted in impaired DNA repair and hypersensitivity to ionizing radiation(IR).We found that IR-induced serine 214 phosphorylation was ataxia-telangiectasia mutated(ATM)kinase-dependent.Mutation of serine 214 to alanine failed to rescue the phenotypes of MAD1 knockdown cells in response to IR.Using mass spectrometry,we identified a protein complex mediated by MAD1 serine 214 phosphorylation in response to IR.Among them,we showed that KU80 was a key protein that displayed enhanced interaction with MAD1 after DNA damage.Finally,we showed that MAD1 interaction with KU80 required serine 214 phosphorylation,and it was essential for activation of DNA protein kinases catalytic subunit(DNA-PKcs).Conclusions:MAD1 serine 214 phosphorylation mediated by ATM kinase in response to IR was required for the interaction with KU80 and activation of DNA-PKCs.展开更多
BACKGROUND In patients with metastatic colorectal cancer(mCRC),the treatment options are limited and have been proved to be affected by rat sarcoma virus(RAS)mutational status.In RAS wild-type(wt)patients,the combinat...BACKGROUND In patients with metastatic colorectal cancer(mCRC),the treatment options are limited and have been proved to be affected by rat sarcoma virus(RAS)mutational status.In RAS wild-type(wt)patients,the combination of antiepidermal growth factor receptor(EGFR)monoclonal antibodies with chemotherapy(CT)is more effective than CT alone.On the other hand,RAS-mutated patients are not eligible for treatment with anti-EGFR antibodies.CASE SUMMARY Eleven patients with initially RAS-mutated mCRC were followed from diagnosis to May 2022.At the time of cell-free DNA determination,five patients had undergone one CT line,five patients had undergone two CT lines,and one patient had undergone three CT lines(all in combination with bevacizumab).At the second and third treatment lines[second line(2L),third line(3L)],patients with neo-RAS wt received a combination of CT and cetuximab.In neo-RAS wt patients treated with anti-EGFR,our findings indicated an increase in progression-free survival for both 2L and 3L(14.5 mo,P=0.119 and 3.9 mo,P=0.882,respectively).Regarding 2L overall survival,we registered a slight increase in neo-RAS wt patients treated with anti-EGFR(33.6 mo vs 32.4 mo,P=0.385).At data cut-off,two patients were still alive:A RAS-mutated patient undergoing 3L treatment and a neo-RAS wt patient who received 2L treatment with anti-EGFR(ongoing).CONCLUSION Our case series demonstrated that monitoring RAS mutations in mCRC by liquid biopsy may provide an additional treatment line for neo-RAS wt patients.展开更多
The global outbreak of coronavirus disease 19(COVID-19),caused by severe acute respiratory syndrome coronavirus 2(SARS-Co V-2),has raised significant global apprehension.Developing a rapid,efficient,sensitive,and accu...The global outbreak of coronavirus disease 19(COVID-19),caused by severe acute respiratory syndrome coronavirus 2(SARS-Co V-2),has raised significant global apprehension.Developing a rapid,efficient,sensitive,and accurate point-of-care detection method is imperative for curbing SARS-Co V-2 transmission.Here,we screened a sequence,designed a set of highly sensitive loopmediated isothermal amplification primers(LAMP)and g RNA,and developed a user-friendly detection platform combining CRISPRCas12a and RT-LAMP technology to specifically detect SARS-Co V-2 and its 5 variants.Bioinformatics analysis and Cas12a-g RNA identification ensured sequence specificity,allowing us to identify SARS-Co V-2 mutations.We developed a method for the detection of SARSCoV-2 using these primers in combination with LAMP amplification and CRISPR-Cas12a technology.This method is designed to detect SARS-CoV-2(NC_045512),Alpha(B.1.1.7),Beta(B.1.351),Gamma(P.1),Delta(B.1.617.2)and Omicron(B.1.1.529).Additionally,it can differentiate SARS-CoV-2 from other coronaviruses.Quantitative analysis can be conducted by measuring fluorescence values,while qualitative analysis can be performed by observing fluorescence color point-of-care diagnosis changes with the naked eye.These results suggest that a set of novel sensitive LAMP primers and g RNA have been obtained to detect the extensive variants,and the RT-LAMPCRISPR-Cas12a platform significantly facilitates point-of-care diagnosis,thereby halting the spread of SARS-Co V-2,thus contributing to COVID-19 prevention and control.展开更多
The mutation rate is a pivotal biological characteristic,intricately governed by natural selection and historically garnering considerable attention.Recent advances in high-throughput sequencing and analytical methodo...The mutation rate is a pivotal biological characteristic,intricately governed by natural selection and historically garnering considerable attention.Recent advances in high-throughput sequencing and analytical methodologies have profoundly transformed our understanding in this domain,ushering in an unprecedented era of mutation rate research.This paper aims to provide a comprehensive overview of the key concepts and methodologies frequently employed in the study of mutation rates.It examines various types of mutations,explores the evolutionary dynamics and associated theories,and synthesizes both classical and contemporary hypotheses.Furthermore,this review comprehensively explores recent advances in understanding germline and somatic mutations in animals and offers an overview of experimental methodologies,mutational patterns,molecular mechanisms,and driving forces influencing variations in mutation rates across species and tissues.Finally,it proposes several potential research directions and pressing questions for future investigations.展开更多
●AIM:To investigate the molecular diagnosis of a threegeneration Chinese family affected with aniridia,and further to identify clinically a PAX6 missense mutation in members with atypical aniridia.●METHODS:Eleven fa...●AIM:To investigate the molecular diagnosis of a threegeneration Chinese family affected with aniridia,and further to identify clinically a PAX6 missense mutation in members with atypical aniridia.●METHODS:Eleven family members with and without atypical aniridia were recruited.All family members underwent comprehensive ophthalmic examinations.A combination of whole exome sequencing(WES)and direct Sanger sequencing were performed to uncover the causative mutation.●RESULTS:Among the 11 family members,8 were clinically diagnosed with congenital aniridia(atypical aniridia phenotype).A rare heterozygous mutation c.622C>T(p.Arg208Trp)in exon 8 of PAX6 was identified in all affected family members but not in the unaffected members or in healthy control subjects.●CONCLUSION:A rare missense mutation in the PAX6 gene is found in members of a three-generation Chinese family with congenital atypical aniridia.This result contributes to an increase in the phenotypic spectrum caused by PAX6 missense heterozygous variants and provides useful information for the clinical diagnosis of atypical aniridia,which may also contribute to genetic counselling and family planning.展开更多
Agrobacterium-mediated plant transformation is widely used in plant genetic engineering.However,its efficiency is limited by plant immunity against Agrobacterium.Chili pepper(Capsicum annuum L.)is an important vegetab...Agrobacterium-mediated plant transformation is widely used in plant genetic engineering.However,its efficiency is limited by plant immunity against Agrobacterium.Chili pepper(Capsicum annuum L.)is an important vegetable that is recalcitrant to Agrobacterium-mediated transformation.In this work,Agrobacterium was found to induce a strong immune response in pepper,which might be the reason for T-DNA being difficult to express in pepper.An Agrobacterium mutant screen was conducted and a point mutation in the hisI gene was identified due to a weak immune response and enhanced transient expression mediated by this Agrobacterium mutant in pepper leaves.Further genetic analysis revealed that histidine biosynthesis deficiency caused by mutations in many genes of this pathway led to reduced pepper cell death,presumably due to reduced bacterial growth.However,mutation analysis of threonine and tryptophan biosynthesis genes showed that the biosynthesis of different amino acids may play different roles in Agrobacterium growth and stimulating the pepper immune response.The possible application of Agrobacterium amino acid biosynthesis mutations in plant biology was discussed.展开更多
BACKGROUND Multiple endocrine neoplasia type 2(MEN2)is a rare,autosomal dominant endocrine disease.Currently,the RET proto-oncogene is the only gene implicated in MEN2A pathogenesis.Once an RET carrier is detected,fam...BACKGROUND Multiple endocrine neoplasia type 2(MEN2)is a rare,autosomal dominant endocrine disease.Currently,the RET proto-oncogene is the only gene implicated in MEN2A pathogenesis.Once an RET carrier is detected,family members should be screened to enable early detection of medullary thyroid carcinoma,pheochromocytoma,and hyperparatitity.Among these,medullary thyroid carcinoma is the main factor responsible for patient mortality.Accordingly,delineating strategies to inform clinical follow-up and treatment plans based on genes is paramount for clinical practitioners.CASE SUMMARY Herein,we present RET proto-oncogene mutations,clinical characteristics,and treatment strategies in a family with MEN2A.A family study was conducted on patients diagnosed with MEN2A.DNA was extracted from the peripheral blood of family members,and first-generation exon sequencing of the RET protooncogene was conducted.The C634Y mutation was identified in three family members spanning three generations.Two patients were sequentially diagnosed with pheochromocytomas and bilateral medullary thyroid carcinomas.A 9-yearold child harboring the gene mutation was diagnosed with medullary thyroid carcinoma.Surgical resection of the tumors was performed.All family members were advised to undergo complete genetic testing related to the C634Y mutation,and the corresponding treatments administered based on test results and associated clinical guidelines.CONCLUSION Advancements in MEN2A research are important for familial management,assessment of medullary thyroid cancer invasive risk,and deciding surgical timing.展开更多
BACKGROUND Sessile serrated lesions(SSLs)are considered precancerous colorectal lesions that should be detected and removed to prevent colorectal cancer.Previous studies in Vietnam mainly investigated the adenoma path...BACKGROUND Sessile serrated lesions(SSLs)are considered precancerous colorectal lesions that should be detected and removed to prevent colorectal cancer.Previous studies in Vietnam mainly investigated the adenoma pathway,with limited data on the serrated pathway.AIM To evaluate the prevalence,risk factors,and BRAF mutations of SSLs in the Vietnamese population.METHODS This is a cross-sectional study conducted on patients with lower gastrointestinal symptoms who underwent colonoscopy at a tertiary hospital in Vietnam.SSLs were diagnosed on histopathology according to the 2019 World Health Organi-zation classification.BRAF mutation analysis was performed using the Sanger DNA sequencing method.The multivariate logistic regression model was used to determine SSL-associated factors.RESULTS There were 2489 patients,with a mean age of 52.1±13.1 and a female-to-male ratio of 1:1.1.The prevalence of SSLs was 4.2%[95%confidence interval(CI):3.5-5.1].In the multivariate analysis,factors significantly associated with SSLs were age≥40[odds ratio(OR):3.303;95%CI:1.607-6.790],male sex(OR:2.032;95%CI:1.204-3.429),diabetes mellitus(OR:2.721;95%CI:1.551-4.772),and hypertension(OR:1.650,95%CI:1.045-2.605).The rate of BRAF mutations in SSLs was 35.5%.CONCLUSION The prevalence of SSLs was 4.2%.BRAF mutations were present in one-third of SSLs.Significant risk factors for SSLs included age≥40,male sex,diabetes mellitus,and hypertension.展开更多
BACKGROUND Ferroptosis has recently been associated with multiple degenerative diseases.Ferroptosis induction in cancer cells is a feasible method for treating neoplastic diseases.However,the association of iron proli...BACKGROUND Ferroptosis has recently been associated with multiple degenerative diseases.Ferroptosis induction in cancer cells is a feasible method for treating neoplastic diseases.However,the association of iron proliferation-related genes with prognosis in HER2+breast cancer(BC)patients is unclear.AIM To identify and evaluate fresh ferroptosis-related biomarkers for HER2+BC.METHODS First,we obtained the mRNA expression profiles and clinical information of HER2+BC patients from the TCGA and METABRIC public databases.A four gene prediction model comprising PROM2,SLC7A11,FANCD2,and FH was subsequently developed in the TCGA cohort and confirmed in the METABRIC cohort.Patients were stratified into high-risk and low-risk groups based on their median risk score,an independent predictor of overall survival(OS).Based on these findings,immune infiltration,mutations,and medication sensitivity were analyzed in various risk groupings.Additionally,we assessed patient prognosis by combining the tumor mutation burden(TMB)with risk score.Finally,we evaluated the expression of critical genes by analyzing single-cell RNA sequencing(scRNA-seq)data from malignant vs normal epithelial cells.RESULTS We found that the higher the risk score was,the worse the prognosis was(P<0.05).We also found that the immune cell infiltration,mutation,and drug sensitivity were different between the different risk groups.The highrisk subgroup was associated with lower immune scores and high TMB.Moreover,we found that the combination of the TMB and risk score could stratify patients into three groups with distinct prognoses.HRisk-HTMB patients had the worst prognosis,whereas LRisk-LTMB patients had the best prognosis(P<0.0001).Analysis of the scRNAseq data showed that PROM2,SLC7A11,and FANCD2 were significantly differentially expressed,whereas FH was not,suggesting that these genes are expressed mainly in cancer epithelial cells(P<0.01).CONCLUSION Our model helps guide the prognosis of HER2+breast cancer patients,and its combination with the TMB can aid in more accurate assessment of patient prognosis and provide new ideas for further diagnosis and treatment.展开更多
In Senegal in particular, ovarian cancer, which is one of the most common gynecological cancers, accounts for 2.8% of deaths. The most important risk factor is genetic, with 10% of cases occurring in a context of gene...In Senegal in particular, ovarian cancer, which is one of the most common gynecological cancers, accounts for 2.8% of deaths. The most important risk factor is genetic, with 10% of cases occurring in a context of genetic predisposition. The sequencing of the human genome, which has led to the discovery of millions of sequence variations, makes it possible to study variations within sequences. These variations are limited to Single Nucleotide Polymorphisms (SNPs) and this common form of polymorphism occurs approximately every 1000 bases in the human genome and 1.8 million SNPs are currently listed according to [1]. The aim of this study is to gain a better understanding of the impact of mutations in the D-loop region of mtDNA on ovarian cancer in Senegalese women. This study involved searching for mutations in our study population after DNA extraction and sequencing. Mutations were found after a comparison of our sequences with the Cambridge reference sequence (NC_012920). The mutations found in the DNA studied extend from position 7 to position 16568 and most of these mutations are located in the hypervariate zones (HV1 and HV2). Heteroplasmy with three mutant alleles was also found in certain variants. Common mutations were found in both healthy and cancerous tissues, with almost identical frequencies in both types of tissue. This enabled us to understand the spread of tumor cells throughout the ovary.展开更多
Genetic algorithms(GAs)are very good metaheuristic algorithms that are suitable for solving NP-hard combinatorial optimization problems.AsimpleGAbeginswith a set of solutions represented by a population of chromosomes...Genetic algorithms(GAs)are very good metaheuristic algorithms that are suitable for solving NP-hard combinatorial optimization problems.AsimpleGAbeginswith a set of solutions represented by a population of chromosomes and then uses the idea of survival of the fittest in the selection process to select some fitter chromosomes.It uses a crossover operator to create better offspring chromosomes and thus,converges the population.Also,it uses a mutation operator to explore the unexplored areas by the crossover operator,and thus,diversifies the GA search space.A combination of crossover and mutation operators makes the GA search strong enough to reach the optimal solution.However,appropriate selection and combination of crossover operator and mutation operator can lead to a very good GA for solving an optimization problem.In this present paper,we aim to study the benchmark traveling salesman problem(TSP).We developed several genetic algorithms using seven crossover operators and six mutation operators for the TSP and then compared them to some benchmark TSPLIB instances.The experimental studies show the effectiveness of the combination of a comprehensive sequential constructive crossover operator and insertion mutation operator for the problem.The GA using the comprehensive sequential constructive crossover with insertion mutation could find average solutions whose average percentage of excesses from the best-known solutions are between 0.22 and 14.94 for our experimented problem instances.展开更多
Objective:To examine the perioperative impact of factor V Leiden mutation on thromboembolic events'risk in radical prostatectomy(RP)patients.With an incidence of about 5%,factor V Leiden mutation is the most commo...Objective:To examine the perioperative impact of factor V Leiden mutation on thromboembolic events'risk in radical prostatectomy(RP)patients.With an incidence of about 5%,factor V Leiden mutation is the most common hereditary hypercoagulability among Caucasians and rarer in Asia.The increased risk of thromboembolic events is three-to seven-fold in heterozygous and to 80-fold in homozygous patients.Methods:Within our prospectively collected database,we analysed 33006 prostate cancer patients treated with RP between December 2001 and December 2020.Of those,patients with factor V Leiden mutation were identified.All patients received individualised recommendation of haemostaseologists for perioperative anticoagulation.Thromboembolic complications(deep vein thrombosis and pulmonary embolism)were assessed during hospital stay,as well as according to patient reported outcomes within the first 3 months after RP.Results:Overall,85(0.3%)patients with known factor V Leiden mutation were identified.Median age was 65(interquartile range:61-68)years.There was at least one thrombosis in 53(62.4%)patients and 31(36.5%)patients had at least one embolic event in their medical history before RP.Within all 85 patients with factor V Leiden mutation,we experienced no thromboembolic complications within the first 3 months after surgery.Conclusion:In our cohort of patients with factor V Leiden mutation,no thromboembolic events were observed after RP with an individualised perioperative coagulation management concept.This may reassure patients with this hereditary condition who are counselled for RP.展开更多
Porcine reproductive and respiratory syndrome(PRRS)is a globally prevalent contagious disease caused by the positive-strand RNA PRRS virus(PRRSV),resulting in substantial economic losses in the swine industry.Modifyin...Porcine reproductive and respiratory syndrome(PRRS)is a globally prevalent contagious disease caused by the positive-strand RNA PRRS virus(PRRSV),resulting in substantial economic losses in the swine industry.Modifying the CD163 SRCR5 domain,either through deletion or substitution,can eff1ectively confer resistance to PRRSV infection in pigs.However,large fragment modifications in pigs inevitably raise concerns about potential adverse effects on growth performance.Reducing the impact of genetic modifications on normal physiological functions is a promising direction for developing PRRSV-resistant pigs.In the current study,we identified a specific functional amino acid in CD163 that influences PRRSV proliferation.Viral infection experiments conducted on Marc145 and PK-15CD163 cells illustrated that the mE535G or corresponding pE529G mutations markedly inhibited highly pathogenic PRRSV(HP-PRRSV)proliferation by preventing viral binding and entry.Furthermore,individual viral challenge tests revealed that pigs with the E529G mutation had viral loads two orders of magnitude lower than wild-type(WT)pigs,confirming effective resistance to HP-PRRSV.Examination of the physiological indicators and scavenger function of CD163 verified no significant differences between the WT and E529G pigs.These findings suggest that E529G pigs can be used for breeding PRRSV-resistant pigs,providing novel insights into controlling future PRRSV outbreaks.展开更多
Approximately 30%–40%of growth hormone–secreting pituitary adenomas(GHPAs)harbor somatic activating mutations in GNAS(αsubunit of stimulatory G protein).Mutations in GNAS are associated with clinical features of sm...Approximately 30%–40%of growth hormone–secreting pituitary adenomas(GHPAs)harbor somatic activating mutations in GNAS(αsubunit of stimulatory G protein).Mutations in GNAS are associated with clinical features of smaller and less invasive tumors.However,the role of GNAS mutations in the invasiveness of GHPAs is unclear.GNAS mutations were detected in GHPAs using a standard polymerase chain reaction(PCR)sequencing procedure.The expression of mutation-associated maternally expressed gene 3(MEG3)was evaluated with RT-qPCR.MEG3 was manipulated in GH3 cells using a lentiviral expression system.Cell invasion ability was measured using a Transwell assay,and epithelial–mesenchymal transition(EMT)-associated proteins were quantified by immunofluorescence and western blotting.Finally,a tumor cell xenograft mouse model was used to verify the effect of MEG3 on tumor growth and invasiveness.The invasiveness of GHPAs was significantly decreased in mice with mutated GNAS compared with that in mice with wild-type GNAS.Consistently,the invasiveness of mutant GNASexpressing GH3 cells decreased.MEG3 is uniquely expressed at high levels in GHPAs harboring mutated GNAS.Accordingly,MEG3 upregulation inhibited tumor cell invasion,and conversely,MEG3 downregulation increased tumor cell invasion.Mechanistically,GNAS mutations inhibit EMT in GHPAs.MEG3 in mutated GNAS cells prevented cell invasion through the inactivation of the Wnt/β-catenin signaling pathway,which was further validated in vivo.Our data suggest that GNAS mutations may suppress cell invasion in GHPAs by regulating EMT through the activation of the MEG3/Wnt/β-catenin signaling pathway.展开更多
Understanding genome-wide diversity,inbreeding,and the burden of accumulated deleterious mutations in small and isolated populations is essential for predicting and enhancing population persistence and resilience.Howe...Understanding genome-wide diversity,inbreeding,and the burden of accumulated deleterious mutations in small and isolated populations is essential for predicting and enhancing population persistence and resilience.However,these effects are rarely studied in limestone karst plants.Here,we re-sequenced the nuclear genomes of 62 individuals of the Begonia masoniana complex(B.liuyanii,B.longgangensis,B.masoniana and B.variegata)and investigated genomic divergence and genetic load for these four species.Our analyses revealed four distinct clusters corresponding to each species within the complex.Notably,there was only limited admixture between B.liuyanii and B.longgangensis occurring in overlapping geographic regions.All species experienced historical bottlenecks during the Pleistocene,which were likely caused by glacial climate fluctuations.We detected an asymmetric historical gene flow between group pairs within this timeframe,highlighting a distinctive pattern of interspecific divergence attributable to karst geographic isolation.We found that isolated populations of B.masoniana have limited gene flow,the smallest recent population size,the highest inbreeding coefficients,and the greatest accumulation of recessive deleterious mutations.These findings underscore the urgency to prioritize conservation efforts for these isolated population.This study is among the first to disentangle the genetic differentiation and specific demographic history of karst Begonia plants at the whole-genome level,shedding light on the potential risks associated with the accumulation of deleterious mutations over generations of inbreeding.Moreover,our findings may facilitate conservation planning by providing critical baseline genetic data and a better understanding of the historical events that have shaped current population structure of rare and endangered karst plants.展开更多
Cyperus difformis L.is a troublesome weed in paddy fields and has attracted attention due to its resistance to acetohydroxyacid synthase(AHAS)inhibitors.It was found that the amino acid mutation in AHAS was the primar...Cyperus difformis L.is a troublesome weed in paddy fields and has attracted attention due to its resistance to acetohydroxyacid synthase(AHAS)inhibitors.It was found that the amino acid mutation in AHAS was the primary cause for the resistance of Cyperus difformis.However,the effect of different mutations on AHAS function is not clear in Cyperus difformis.To confirm the effect of mutations on AHAS function,six biotypes were collected,including Pro197Arg,Pro197Ser,Pro197Leu,Asp376Glu,Trp574Leu and wild type,from Hunan,Anhui,Jiangxi and Jiangsu provinces,China and the function of AHAS was characterized.The AHAS in vitro inhibition assay results indicated that the mutations decreased the sensitivity of AHAS to pyrazosulfuron-ethyl,in which the I_(50)(the half maximal inhibitory concentration)of wild type AHAS was 0.04μmol L^(-1)and Asp376Glu,Pro197Leu,Pro197Arg,Pro197Ser and Trp574Leu mutations were 3.98,11.50,40.38,38.19 and 311.43μmol L^(-1),respectively.In the determination of enzyme kinetics parameters,the Km and the maximum reaction velocity(Vmax)of the wild type were 5.18 mmol L^(-1)and 0.12 nmol mg^(-1)min^(-1),respectively,and the Km values of AHAS with Asp376Glu,Trp574Leu,Pro197Leu and Pro197Ser mutations were 0.38-0.93 times of the wild type.The Km value of the Pro197Arg mutation was 1.14times of the wild type,and the Vmax values of the five mutations were 1.17-3.33-fold compared to the wild type.It was found that the mutations increased the affinity of AHAS to the substrate,except for the Pro197Arg mutation.At a concentration of 0.0032-100 mmol L^(-1)branched-chain amino acids(BCAAs),the sensitivity of the other four mutant AHAS biotypes to feedback inhibition decreased,except for the Pro197Arg mutation.This study elucidated the effect of different mutations on AHAS function in Cyperus difformis and provided ideas for further study of resistance development.展开更多
●AIM:To identify disease-causative mutations in families with congenital cataract.●METHODS:Two Chinese families with autosomaldominant congenital cataract(ADCC)were recruited and underwent comprehensive eye examinat...●AIM:To identify disease-causative mutations in families with congenital cataract.●METHODS:Two Chinese families with autosomaldominant congenital cataract(ADCC)were recruited and underwent comprehensive eye examinations.Gene panel next-generation sequencing of common pathogenic genes of congenital cataract was performed in the proband of each family.Sanger sequencing was used to valid the candidate gene mutations and sequence the other family members for co-segregation analysis.The effect of sequence changes on protein structure and function was predicted through bioinformatics analysis.Major intrinsic protein(MIP)-wildtype and MIP-G29R plasmids were constructed and microinjected into zebrafish single-cell stage embryos.Zebrafish embryonic lens phenotypes were screened using confocal microscopy.●RESULTS:A novel heterozygous mutation(c.85G>A;p.G29R)in the MIP gene was identified in the proband of one family.A known heterozygous mutation(c.97C>T;p.R33C;rs864309693)in MIP was found in the proband of another family.In-silico prediction indicated that the novel mutation might affect the MIP protein function.Zebrafish embryonic lens was uniformly transparent in both wild-type PCS2+MIP and mutant PCS2+MIP.●CONCLUSION:Two missense mutations in the MIP gene in Chinese cataract families are identified,and one of which is novel.These findings expand the genetic spectrum of MIP mutations associated with cataracts.The functional studies suggest that the novel MIP mutation might not be a gain-of-function but a loss-of-function mutation.展开更多
The static and predictable characteristics of cyber systems give attackers an asymmetric advantage in gathering useful information and launching attacks.To reverse this asymmetric advantage,a new defense idea,called M...The static and predictable characteristics of cyber systems give attackers an asymmetric advantage in gathering useful information and launching attacks.To reverse this asymmetric advantage,a new defense idea,called Moving Target Defense(MTD),has been proposed to provide additional selectable measures to complement traditional defense.However,MTD is unable to defeat the sophisticated attacker with fingerprint tracking ability.To overcome this limitation,we go one step beyond and show that the combination of MTD and Deception-based Cyber Defense(DCD)can achieve higher performance than either of them.In particular,we first introduce and formalize a novel attacker model named Scan and Foothold Attack(SFA)based on cyber kill chain.Afterwards,we develop probabilistic models for SFA defenses to provide a deeper analysis of the theoretical effect under different defense strategies.These models quantify attack success probability and the probability that the attacker will be deceived under various conditions,such as the size of address space,and the number of hosts,attack analysis time.Finally,the experimental results show that the actual defense effect of each strategy almost perfectly follows its probabilistic model.Also,the defense strategy of combining address mutation and fingerprint camouflage can achieve a better defense effect than the single address mutation.展开更多
To enhance the diversity and distribution uniformity of initial population,as well as to avoid local extrema in the Chimp Optimization Algorithm(CHOA),this paper improves the CHOA based on chaos initialization and Cau...To enhance the diversity and distribution uniformity of initial population,as well as to avoid local extrema in the Chimp Optimization Algorithm(CHOA),this paper improves the CHOA based on chaos initialization and Cauchy mutation.First,Sin chaos is introduced to improve the random population initialization scheme of the CHOA,which not only guarantees the diversity of the population,but also enhances the distribution uniformity of the initial population.Next,Cauchy mutation is added to optimize the global search ability of the CHOA in the process of position(threshold)updating to avoid the CHOA falling into local optima.Finally,an improved CHOA was formed through the combination of chaos initialization and Cauchy mutation(CICMCHOA),then taking fuzzy Kapur as the objective function,this paper applied CICMCHOA to natural and medical image segmentation,and compared it with four algorithms,including the improved Satin Bowerbird optimizer(ISBO),Cuckoo Search(ICS),etc.The experimental results deriving from visual and specific indicators demonstrate that CICMCHOA delivers superior segmentation effects in image segmentation.展开更多
BACKGROUND We report a rare case of primary clinical presentation featuring elevated creatine kinase(CK)levels in a neonate,which is associated with the LAMA2 gene.In this case,a heterozygous mutation in exon5 of the ...BACKGROUND We report a rare case of primary clinical presentation featuring elevated creatine kinase(CK)levels in a neonate,which is associated with the LAMA2 gene.In this case,a heterozygous mutation in exon5 of the LAMA2 gene,c.715C>G(resulting in a change of nucleotide number 715 in the coding region from cytosine to gua-nine),induced an amino acid alteration p.R239G(No.239)in the patient,repre-senting a missense mutation.This observation may be elucidated by the neonatal creatine monitoring mechanism,a phenomenon not previously reported.CASE SUMMARY We analysed the case of a neonate presenting solely with elevated CK levels who was eventually discharged after supportive treatment.The chief complaint was identification of increased CK levels for 15 d and higher CK values for 1 d.Ad-mission occurred at 18 d of age,and despite prolonged treatment with creatine and vitamin C,the elevated CK levels showed limited improvement.Whole exo-me sequencing revealed the presence of a c.715C>G mutation in LAMA2 in the newborn,correlating with a clinical phenotype.However,the available informa-tion offers insufficient evidence for clinical pathogenicity.CONCLUSION Mutations in LAMA2 are associated with the clinical phenotype of increased neonatal CK levels,for which no specific treatment exists.Whole genome sequen-cing facilitates early diagnosis.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.81672743 and 81974464)Beijing Tianjin Hebei Basic Research Cooperation Project(Grant No.19JCZDJC64500(Z))+4 种基金Shenzhen Basic Research Project(Grant No.JCYJ20160331114230843)Tianjin Municipal Health Commission(Grant Nos.2015KR11 and 2013KG134)Tianjin Municipal Science and Technology Bureau(Grant No.18JCYBJC27800)US NIH grant RO 1 CAI33093,the Alabama Innovation Fund of the United Statesthe Tianjin Medical University Cancer Institute and Hospital Innovation Fund(Grant No.1803)。
文摘Objective:Mitotic arrest-deficient protein 1(MAD1)is a kinetochore protein essential for the mitotic spindle checkpoint.Proteomic studies have indicated that MAD1 is a component of the DNA damage response(DDR)pathway.However,whether and how MAD1 might be directly involved in the DDR is largely unknown.Methods:We ectopically expressed the wild type,or a phosphorylation-site--mutated form of MAD1 in MAD1 knockdown cells to look for complementation effects.We used the comet assay,colony formation assay,immunofluorescence staining,and flow cytometry to assess the DDR,radiosensitivity,and the G2/M checkpoint.We employed co-immunoprecipitation followed by mass spectrometry to identify MAD1 interacting proteins.Data were analyzed using the unpaired Student'st-test.Results:We showed that MAD1 was required for an optimal DDR,as knocking down MAD1 resulted in impaired DNA repair and hypersensitivity to ionizing radiation(IR).We found that IR-induced serine 214 phosphorylation was ataxia-telangiectasia mutated(ATM)kinase-dependent.Mutation of serine 214 to alanine failed to rescue the phenotypes of MAD1 knockdown cells in response to IR.Using mass spectrometry,we identified a protein complex mediated by MAD1 serine 214 phosphorylation in response to IR.Among them,we showed that KU80 was a key protein that displayed enhanced interaction with MAD1 after DNA damage.Finally,we showed that MAD1 interaction with KU80 required serine 214 phosphorylation,and it was essential for activation of DNA protein kinases catalytic subunit(DNA-PKcs).Conclusions:MAD1 serine 214 phosphorylation mediated by ATM kinase in response to IR was required for the interaction with KU80 and activation of DNA-PKCs.
文摘BACKGROUND In patients with metastatic colorectal cancer(mCRC),the treatment options are limited and have been proved to be affected by rat sarcoma virus(RAS)mutational status.In RAS wild-type(wt)patients,the combination of antiepidermal growth factor receptor(EGFR)monoclonal antibodies with chemotherapy(CT)is more effective than CT alone.On the other hand,RAS-mutated patients are not eligible for treatment with anti-EGFR antibodies.CASE SUMMARY Eleven patients with initially RAS-mutated mCRC were followed from diagnosis to May 2022.At the time of cell-free DNA determination,five patients had undergone one CT line,five patients had undergone two CT lines,and one patient had undergone three CT lines(all in combination with bevacizumab).At the second and third treatment lines[second line(2L),third line(3L)],patients with neo-RAS wt received a combination of CT and cetuximab.In neo-RAS wt patients treated with anti-EGFR,our findings indicated an increase in progression-free survival for both 2L and 3L(14.5 mo,P=0.119 and 3.9 mo,P=0.882,respectively).Regarding 2L overall survival,we registered a slight increase in neo-RAS wt patients treated with anti-EGFR(33.6 mo vs 32.4 mo,P=0.385).At data cut-off,two patients were still alive:A RAS-mutated patient undergoing 3L treatment and a neo-RAS wt patient who received 2L treatment with anti-EGFR(ongoing).CONCLUSION Our case series demonstrated that monitoring RAS mutations in mCRC by liquid biopsy may provide an additional treatment line for neo-RAS wt patients.
基金Supported by the National Natural Sciences Foundation of China(52073022)the Fundamental Research Funds for the Central Universities of China and the Translational Medical Research Fund of Wuhan University Taikang Medical School(School of Basic Medical Sciences)the Key Laboratory of Environmental Pollution Monitoring and Disease Control(Guizhou Medical University)Ministry of Education(GMU-2022-HJZ)。
文摘The global outbreak of coronavirus disease 19(COVID-19),caused by severe acute respiratory syndrome coronavirus 2(SARS-Co V-2),has raised significant global apprehension.Developing a rapid,efficient,sensitive,and accurate point-of-care detection method is imperative for curbing SARS-Co V-2 transmission.Here,we screened a sequence,designed a set of highly sensitive loopmediated isothermal amplification primers(LAMP)and g RNA,and developed a user-friendly detection platform combining CRISPRCas12a and RT-LAMP technology to specifically detect SARS-Co V-2 and its 5 variants.Bioinformatics analysis and Cas12a-g RNA identification ensured sequence specificity,allowing us to identify SARS-Co V-2 mutations.We developed a method for the detection of SARSCoV-2 using these primers in combination with LAMP amplification and CRISPR-Cas12a technology.This method is designed to detect SARS-CoV-2(NC_045512),Alpha(B.1.1.7),Beta(B.1.351),Gamma(P.1),Delta(B.1.617.2)and Omicron(B.1.1.529).Additionally,it can differentiate SARS-CoV-2 from other coronaviruses.Quantitative analysis can be conducted by measuring fluorescence values,while qualitative analysis can be performed by observing fluorescence color point-of-care diagnosis changes with the naked eye.These results suggest that a set of novel sensitive LAMP primers and g RNA have been obtained to detect the extensive variants,and the RT-LAMPCRISPR-Cas12a platform significantly facilitates point-of-care diagnosis,thereby halting the spread of SARS-Co V-2,thus contributing to COVID-19 prevention and control.
文摘The mutation rate is a pivotal biological characteristic,intricately governed by natural selection and historically garnering considerable attention.Recent advances in high-throughput sequencing and analytical methodologies have profoundly transformed our understanding in this domain,ushering in an unprecedented era of mutation rate research.This paper aims to provide a comprehensive overview of the key concepts and methodologies frequently employed in the study of mutation rates.It examines various types of mutations,explores the evolutionary dynamics and associated theories,and synthesizes both classical and contemporary hypotheses.Furthermore,this review comprehensively explores recent advances in understanding germline and somatic mutations in animals and offers an overview of experimental methodologies,mutational patterns,molecular mechanisms,and driving forces influencing variations in mutation rates across species and tissues.Finally,it proposes several potential research directions and pressing questions for future investigations.
文摘●AIM:To investigate the molecular diagnosis of a threegeneration Chinese family affected with aniridia,and further to identify clinically a PAX6 missense mutation in members with atypical aniridia.●METHODS:Eleven family members with and without atypical aniridia were recruited.All family members underwent comprehensive ophthalmic examinations.A combination of whole exome sequencing(WES)and direct Sanger sequencing were performed to uncover the causative mutation.●RESULTS:Among the 11 family members,8 were clinically diagnosed with congenital aniridia(atypical aniridia phenotype).A rare heterozygous mutation c.622C>T(p.Arg208Trp)in exon 8 of PAX6 was identified in all affected family members but not in the unaffected members or in healthy control subjects.●CONCLUSION:A rare missense mutation in the PAX6 gene is found in members of a three-generation Chinese family with congenital atypical aniridia.This result contributes to an increase in the phenotypic spectrum caused by PAX6 missense heterozygous variants and provides useful information for the clinical diagnosis of atypical aniridia,which may also contribute to genetic counselling and family planning.
基金supported by the National Key Research and Development Program of China(Grant No.2018YFD1000800)National Natural Science Foundation of China(Grant No.32172600)。
文摘Agrobacterium-mediated plant transformation is widely used in plant genetic engineering.However,its efficiency is limited by plant immunity against Agrobacterium.Chili pepper(Capsicum annuum L.)is an important vegetable that is recalcitrant to Agrobacterium-mediated transformation.In this work,Agrobacterium was found to induce a strong immune response in pepper,which might be the reason for T-DNA being difficult to express in pepper.An Agrobacterium mutant screen was conducted and a point mutation in the hisI gene was identified due to a weak immune response and enhanced transient expression mediated by this Agrobacterium mutant in pepper leaves.Further genetic analysis revealed that histidine biosynthesis deficiency caused by mutations in many genes of this pathway led to reduced pepper cell death,presumably due to reduced bacterial growth.However,mutation analysis of threonine and tryptophan biosynthesis genes showed that the biosynthesis of different amino acids may play different roles in Agrobacterium growth and stimulating the pepper immune response.The possible application of Agrobacterium amino acid biosynthesis mutations in plant biology was discussed.
基金Supported by The Finance Bureau of Dongguan City,Guangdong Province.
文摘BACKGROUND Multiple endocrine neoplasia type 2(MEN2)is a rare,autosomal dominant endocrine disease.Currently,the RET proto-oncogene is the only gene implicated in MEN2A pathogenesis.Once an RET carrier is detected,family members should be screened to enable early detection of medullary thyroid carcinoma,pheochromocytoma,and hyperparatitity.Among these,medullary thyroid carcinoma is the main factor responsible for patient mortality.Accordingly,delineating strategies to inform clinical follow-up and treatment plans based on genes is paramount for clinical practitioners.CASE SUMMARY Herein,we present RET proto-oncogene mutations,clinical characteristics,and treatment strategies in a family with MEN2A.A family study was conducted on patients diagnosed with MEN2A.DNA was extracted from the peripheral blood of family members,and first-generation exon sequencing of the RET protooncogene was conducted.The C634Y mutation was identified in three family members spanning three generations.Two patients were sequentially diagnosed with pheochromocytomas and bilateral medullary thyroid carcinomas.A 9-yearold child harboring the gene mutation was diagnosed with medullary thyroid carcinoma.Surgical resection of the tumors was performed.All family members were advised to undergo complete genetic testing related to the C634Y mutation,and the corresponding treatments administered based on test results and associated clinical guidelines.CONCLUSION Advancements in MEN2A research are important for familial management,assessment of medullary thyroid cancer invasive risk,and deciding surgical timing.
文摘BACKGROUND Sessile serrated lesions(SSLs)are considered precancerous colorectal lesions that should be detected and removed to prevent colorectal cancer.Previous studies in Vietnam mainly investigated the adenoma pathway,with limited data on the serrated pathway.AIM To evaluate the prevalence,risk factors,and BRAF mutations of SSLs in the Vietnamese population.METHODS This is a cross-sectional study conducted on patients with lower gastrointestinal symptoms who underwent colonoscopy at a tertiary hospital in Vietnam.SSLs were diagnosed on histopathology according to the 2019 World Health Organi-zation classification.BRAF mutation analysis was performed using the Sanger DNA sequencing method.The multivariate logistic regression model was used to determine SSL-associated factors.RESULTS There were 2489 patients,with a mean age of 52.1±13.1 and a female-to-male ratio of 1:1.1.The prevalence of SSLs was 4.2%[95%confidence interval(CI):3.5-5.1].In the multivariate analysis,factors significantly associated with SSLs were age≥40[odds ratio(OR):3.303;95%CI:1.607-6.790],male sex(OR:2.032;95%CI:1.204-3.429),diabetes mellitus(OR:2.721;95%CI:1.551-4.772),and hypertension(OR:1.650,95%CI:1.045-2.605).The rate of BRAF mutations in SSLs was 35.5%.CONCLUSION The prevalence of SSLs was 4.2%.BRAF mutations were present in one-third of SSLs.Significant risk factors for SSLs included age≥40,male sex,diabetes mellitus,and hypertension.
基金The Science and Technology Commission of Shanxi province,No.201901D111428.
文摘BACKGROUND Ferroptosis has recently been associated with multiple degenerative diseases.Ferroptosis induction in cancer cells is a feasible method for treating neoplastic diseases.However,the association of iron proliferation-related genes with prognosis in HER2+breast cancer(BC)patients is unclear.AIM To identify and evaluate fresh ferroptosis-related biomarkers for HER2+BC.METHODS First,we obtained the mRNA expression profiles and clinical information of HER2+BC patients from the TCGA and METABRIC public databases.A four gene prediction model comprising PROM2,SLC7A11,FANCD2,and FH was subsequently developed in the TCGA cohort and confirmed in the METABRIC cohort.Patients were stratified into high-risk and low-risk groups based on their median risk score,an independent predictor of overall survival(OS).Based on these findings,immune infiltration,mutations,and medication sensitivity were analyzed in various risk groupings.Additionally,we assessed patient prognosis by combining the tumor mutation burden(TMB)with risk score.Finally,we evaluated the expression of critical genes by analyzing single-cell RNA sequencing(scRNA-seq)data from malignant vs normal epithelial cells.RESULTS We found that the higher the risk score was,the worse the prognosis was(P<0.05).We also found that the immune cell infiltration,mutation,and drug sensitivity were different between the different risk groups.The highrisk subgroup was associated with lower immune scores and high TMB.Moreover,we found that the combination of the TMB and risk score could stratify patients into three groups with distinct prognoses.HRisk-HTMB patients had the worst prognosis,whereas LRisk-LTMB patients had the best prognosis(P<0.0001).Analysis of the scRNAseq data showed that PROM2,SLC7A11,and FANCD2 were significantly differentially expressed,whereas FH was not,suggesting that these genes are expressed mainly in cancer epithelial cells(P<0.01).CONCLUSION Our model helps guide the prognosis of HER2+breast cancer patients,and its combination with the TMB can aid in more accurate assessment of patient prognosis and provide new ideas for further diagnosis and treatment.
文摘In Senegal in particular, ovarian cancer, which is one of the most common gynecological cancers, accounts for 2.8% of deaths. The most important risk factor is genetic, with 10% of cases occurring in a context of genetic predisposition. The sequencing of the human genome, which has led to the discovery of millions of sequence variations, makes it possible to study variations within sequences. These variations are limited to Single Nucleotide Polymorphisms (SNPs) and this common form of polymorphism occurs approximately every 1000 bases in the human genome and 1.8 million SNPs are currently listed according to [1]. The aim of this study is to gain a better understanding of the impact of mutations in the D-loop region of mtDNA on ovarian cancer in Senegalese women. This study involved searching for mutations in our study population after DNA extraction and sequencing. Mutations were found after a comparison of our sequences with the Cambridge reference sequence (NC_012920). The mutations found in the DNA studied extend from position 7 to position 16568 and most of these mutations are located in the hypervariate zones (HV1 and HV2). Heteroplasmy with three mutant alleles was also found in certain variants. Common mutations were found in both healthy and cancerous tissues, with almost identical frequencies in both types of tissue. This enabled us to understand the spread of tumor cells throughout the ovary.
基金the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University(IMSIU)(Grant Number IMSIU-RP23030).
文摘Genetic algorithms(GAs)are very good metaheuristic algorithms that are suitable for solving NP-hard combinatorial optimization problems.AsimpleGAbeginswith a set of solutions represented by a population of chromosomes and then uses the idea of survival of the fittest in the selection process to select some fitter chromosomes.It uses a crossover operator to create better offspring chromosomes and thus,converges the population.Also,it uses a mutation operator to explore the unexplored areas by the crossover operator,and thus,diversifies the GA search space.A combination of crossover and mutation operators makes the GA search strong enough to reach the optimal solution.However,appropriate selection and combination of crossover operator and mutation operator can lead to a very good GA for solving an optimization problem.In this present paper,we aim to study the benchmark traveling salesman problem(TSP).We developed several genetic algorithms using seven crossover operators and six mutation operators for the TSP and then compared them to some benchmark TSPLIB instances.The experimental studies show the effectiveness of the combination of a comprehensive sequential constructive crossover operator and insertion mutation operator for the problem.The GA using the comprehensive sequential constructive crossover with insertion mutation could find average solutions whose average percentage of excesses from the best-known solutions are between 0.22 and 14.94 for our experimented problem instances.
文摘Objective:To examine the perioperative impact of factor V Leiden mutation on thromboembolic events'risk in radical prostatectomy(RP)patients.With an incidence of about 5%,factor V Leiden mutation is the most common hereditary hypercoagulability among Caucasians and rarer in Asia.The increased risk of thromboembolic events is three-to seven-fold in heterozygous and to 80-fold in homozygous patients.Methods:Within our prospectively collected database,we analysed 33006 prostate cancer patients treated with RP between December 2001 and December 2020.Of those,patients with factor V Leiden mutation were identified.All patients received individualised recommendation of haemostaseologists for perioperative anticoagulation.Thromboembolic complications(deep vein thrombosis and pulmonary embolism)were assessed during hospital stay,as well as according to patient reported outcomes within the first 3 months after RP.Results:Overall,85(0.3%)patients with known factor V Leiden mutation were identified.Median age was 65(interquartile range:61-68)years.There was at least one thrombosis in 53(62.4%)patients and 31(36.5%)patients had at least one embolic event in their medical history before RP.Within all 85 patients with factor V Leiden mutation,we experienced no thromboembolic complications within the first 3 months after surgery.Conclusion:In our cohort of patients with factor V Leiden mutation,no thromboembolic events were observed after RP with an individualised perioperative coagulation management concept.This may reassure patients with this hereditary condition who are counselled for RP.
基金Major Scientific and Technological Projects in Agricultural Biological Breeding of China(2023ZD0404302)Youth Program of National Natural Science Foundation of China(32202754)。
文摘Porcine reproductive and respiratory syndrome(PRRS)is a globally prevalent contagious disease caused by the positive-strand RNA PRRS virus(PRRSV),resulting in substantial economic losses in the swine industry.Modifying the CD163 SRCR5 domain,either through deletion or substitution,can eff1ectively confer resistance to PRRSV infection in pigs.However,large fragment modifications in pigs inevitably raise concerns about potential adverse effects on growth performance.Reducing the impact of genetic modifications on normal physiological functions is a promising direction for developing PRRSV-resistant pigs.In the current study,we identified a specific functional amino acid in CD163 that influences PRRSV proliferation.Viral infection experiments conducted on Marc145 and PK-15CD163 cells illustrated that the mE535G or corresponding pE529G mutations markedly inhibited highly pathogenic PRRSV(HP-PRRSV)proliferation by preventing viral binding and entry.Furthermore,individual viral challenge tests revealed that pigs with the E529G mutation had viral loads two orders of magnitude lower than wild-type(WT)pigs,confirming effective resistance to HP-PRRSV.Examination of the physiological indicators and scavenger function of CD163 verified no significant differences between the WT and E529G pigs.These findings suggest that E529G pigs can be used for breeding PRRSV-resistant pigs,providing novel insights into controlling future PRRSV outbreaks.
基金supported by the Applied Basic Research Programs of Science and Technology Commission Foundation of Jiangsu Province(No.BE2015684).
文摘Approximately 30%–40%of growth hormone–secreting pituitary adenomas(GHPAs)harbor somatic activating mutations in GNAS(αsubunit of stimulatory G protein).Mutations in GNAS are associated with clinical features of smaller and less invasive tumors.However,the role of GNAS mutations in the invasiveness of GHPAs is unclear.GNAS mutations were detected in GHPAs using a standard polymerase chain reaction(PCR)sequencing procedure.The expression of mutation-associated maternally expressed gene 3(MEG3)was evaluated with RT-qPCR.MEG3 was manipulated in GH3 cells using a lentiviral expression system.Cell invasion ability was measured using a Transwell assay,and epithelial–mesenchymal transition(EMT)-associated proteins were quantified by immunofluorescence and western blotting.Finally,a tumor cell xenograft mouse model was used to verify the effect of MEG3 on tumor growth and invasiveness.The invasiveness of GHPAs was significantly decreased in mice with mutated GNAS compared with that in mice with wild-type GNAS.Consistently,the invasiveness of mutant GNASexpressing GH3 cells decreased.MEG3 is uniquely expressed at high levels in GHPAs harboring mutated GNAS.Accordingly,MEG3 upregulation inhibited tumor cell invasion,and conversely,MEG3 downregulation increased tumor cell invasion.Mechanistically,GNAS mutations inhibit EMT in GHPAs.MEG3 in mutated GNAS cells prevented cell invasion through the inactivation of the Wnt/β-catenin signaling pathway,which was further validated in vivo.Our data suggest that GNAS mutations may suppress cell invasion in GHPAs by regulating EMT through the activation of the MEG3/Wnt/β-catenin signaling pathway.
基金supported by Key-Area Research and Development Program of Guangdong Province(Grant No.2022B1111230001)National Natural Science Foundation of China(31860048).
文摘Understanding genome-wide diversity,inbreeding,and the burden of accumulated deleterious mutations in small and isolated populations is essential for predicting and enhancing population persistence and resilience.However,these effects are rarely studied in limestone karst plants.Here,we re-sequenced the nuclear genomes of 62 individuals of the Begonia masoniana complex(B.liuyanii,B.longgangensis,B.masoniana and B.variegata)and investigated genomic divergence and genetic load for these four species.Our analyses revealed four distinct clusters corresponding to each species within the complex.Notably,there was only limited admixture between B.liuyanii and B.longgangensis occurring in overlapping geographic regions.All species experienced historical bottlenecks during the Pleistocene,which were likely caused by glacial climate fluctuations.We detected an asymmetric historical gene flow between group pairs within this timeframe,highlighting a distinctive pattern of interspecific divergence attributable to karst geographic isolation.We found that isolated populations of B.masoniana have limited gene flow,the smallest recent population size,the highest inbreeding coefficients,and the greatest accumulation of recessive deleterious mutations.These findings underscore the urgency to prioritize conservation efforts for these isolated population.This study is among the first to disentangle the genetic differentiation and specific demographic history of karst Begonia plants at the whole-genome level,shedding light on the potential risks associated with the accumulation of deleterious mutations over generations of inbreeding.Moreover,our findings may facilitate conservation planning by providing critical baseline genetic data and a better understanding of the historical events that have shaped current population structure of rare and endangered karst plants.
基金funded by the National Natural Science Foundation of China(31972281)。
文摘Cyperus difformis L.is a troublesome weed in paddy fields and has attracted attention due to its resistance to acetohydroxyacid synthase(AHAS)inhibitors.It was found that the amino acid mutation in AHAS was the primary cause for the resistance of Cyperus difformis.However,the effect of different mutations on AHAS function is not clear in Cyperus difformis.To confirm the effect of mutations on AHAS function,six biotypes were collected,including Pro197Arg,Pro197Ser,Pro197Leu,Asp376Glu,Trp574Leu and wild type,from Hunan,Anhui,Jiangxi and Jiangsu provinces,China and the function of AHAS was characterized.The AHAS in vitro inhibition assay results indicated that the mutations decreased the sensitivity of AHAS to pyrazosulfuron-ethyl,in which the I_(50)(the half maximal inhibitory concentration)of wild type AHAS was 0.04μmol L^(-1)and Asp376Glu,Pro197Leu,Pro197Arg,Pro197Ser and Trp574Leu mutations were 3.98,11.50,40.38,38.19 and 311.43μmol L^(-1),respectively.In the determination of enzyme kinetics parameters,the Km and the maximum reaction velocity(Vmax)of the wild type were 5.18 mmol L^(-1)and 0.12 nmol mg^(-1)min^(-1),respectively,and the Km values of AHAS with Asp376Glu,Trp574Leu,Pro197Leu and Pro197Ser mutations were 0.38-0.93 times of the wild type.The Km value of the Pro197Arg mutation was 1.14times of the wild type,and the Vmax values of the five mutations were 1.17-3.33-fold compared to the wild type.It was found that the mutations increased the affinity of AHAS to the substrate,except for the Pro197Arg mutation.At a concentration of 0.0032-100 mmol L^(-1)branched-chain amino acids(BCAAs),the sensitivity of the other four mutant AHAS biotypes to feedback inhibition decreased,except for the Pro197Arg mutation.This study elucidated the effect of different mutations on AHAS function in Cyperus difformis and provided ideas for further study of resistance development.
基金Supported by the Science,Technology and Innovation Commission of Shenzhen Municipality(No.GJHZ20220913142618036,No.JCYJ20210324113610029).
文摘●AIM:To identify disease-causative mutations in families with congenital cataract.●METHODS:Two Chinese families with autosomaldominant congenital cataract(ADCC)were recruited and underwent comprehensive eye examinations.Gene panel next-generation sequencing of common pathogenic genes of congenital cataract was performed in the proband of each family.Sanger sequencing was used to valid the candidate gene mutations and sequence the other family members for co-segregation analysis.The effect of sequence changes on protein structure and function was predicted through bioinformatics analysis.Major intrinsic protein(MIP)-wildtype and MIP-G29R plasmids were constructed and microinjected into zebrafish single-cell stage embryos.Zebrafish embryonic lens phenotypes were screened using confocal microscopy.●RESULTS:A novel heterozygous mutation(c.85G>A;p.G29R)in the MIP gene was identified in the proband of one family.A known heterozygous mutation(c.97C>T;p.R33C;rs864309693)in MIP was found in the proband of another family.In-silico prediction indicated that the novel mutation might affect the MIP protein function.Zebrafish embryonic lens was uniformly transparent in both wild-type PCS2+MIP and mutant PCS2+MIP.●CONCLUSION:Two missense mutations in the MIP gene in Chinese cataract families are identified,and one of which is novel.These findings expand the genetic spectrum of MIP mutations associated with cataracts.The functional studies suggest that the novel MIP mutation might not be a gain-of-function but a loss-of-function mutation.
基金supported by the National Key Research and Development Program of China(No.2016YFB0800601)the Key Program of NSFC-Tongyong Union Foundation(No.U1636209)+1 种基金the National Natural Science Foundation of China(61602358)the Key Research and Development Programs of Shaanxi(No.2019ZDLGY13-04,No.2019ZDLGY13-07)。
文摘The static and predictable characteristics of cyber systems give attackers an asymmetric advantage in gathering useful information and launching attacks.To reverse this asymmetric advantage,a new defense idea,called Moving Target Defense(MTD),has been proposed to provide additional selectable measures to complement traditional defense.However,MTD is unable to defeat the sophisticated attacker with fingerprint tracking ability.To overcome this limitation,we go one step beyond and show that the combination of MTD and Deception-based Cyber Defense(DCD)can achieve higher performance than either of them.In particular,we first introduce and formalize a novel attacker model named Scan and Foothold Attack(SFA)based on cyber kill chain.Afterwards,we develop probabilistic models for SFA defenses to provide a deeper analysis of the theoretical effect under different defense strategies.These models quantify attack success probability and the probability that the attacker will be deceived under various conditions,such as the size of address space,and the number of hosts,attack analysis time.Finally,the experimental results show that the actual defense effect of each strategy almost perfectly follows its probabilistic model.Also,the defense strategy of combining address mutation and fingerprint camouflage can achieve a better defense effect than the single address mutation.
基金This work is supported by Natural Science Foundation of Anhui under Grant 1908085MF207,KJ2020A1215,KJ2021A1251 and 2023AH052856the Excellent Youth Talent Support Foundation of Anhui underGrant gxyqZD2021142the Quality Engineering Project of Anhui under Grant 2021jyxm1117,2021kcszsfkc307,2022xsxx158 and 2022jcbs043.
文摘To enhance the diversity and distribution uniformity of initial population,as well as to avoid local extrema in the Chimp Optimization Algorithm(CHOA),this paper improves the CHOA based on chaos initialization and Cauchy mutation.First,Sin chaos is introduced to improve the random population initialization scheme of the CHOA,which not only guarantees the diversity of the population,but also enhances the distribution uniformity of the initial population.Next,Cauchy mutation is added to optimize the global search ability of the CHOA in the process of position(threshold)updating to avoid the CHOA falling into local optima.Finally,an improved CHOA was formed through the combination of chaos initialization and Cauchy mutation(CICMCHOA),then taking fuzzy Kapur as the objective function,this paper applied CICMCHOA to natural and medical image segmentation,and compared it with four algorithms,including the improved Satin Bowerbird optimizer(ISBO),Cuckoo Search(ICS),etc.The experimental results deriving from visual and specific indicators demonstrate that CICMCHOA delivers superior segmentation effects in image segmentation.
基金Supported by The Suzhou Science and Technology Development Plan Guiding Project,No.SZSYYXH-2023-YB5The Suzhou Science and Technology Development Plan Project,No.SKY2023002The Suzhou Key Laboratory of Children's Structural Deformities,No.SZS2022018.
文摘BACKGROUND We report a rare case of primary clinical presentation featuring elevated creatine kinase(CK)levels in a neonate,which is associated with the LAMA2 gene.In this case,a heterozygous mutation in exon5 of the LAMA2 gene,c.715C>G(resulting in a change of nucleotide number 715 in the coding region from cytosine to gua-nine),induced an amino acid alteration p.R239G(No.239)in the patient,repre-senting a missense mutation.This observation may be elucidated by the neonatal creatine monitoring mechanism,a phenomenon not previously reported.CASE SUMMARY We analysed the case of a neonate presenting solely with elevated CK levels who was eventually discharged after supportive treatment.The chief complaint was identification of increased CK levels for 15 d and higher CK values for 1 d.Ad-mission occurred at 18 d of age,and despite prolonged treatment with creatine and vitamin C,the elevated CK levels showed limited improvement.Whole exo-me sequencing revealed the presence of a c.715C>G mutation in LAMA2 in the newborn,correlating with a clinical phenotype.However,the available informa-tion offers insufficient evidence for clinical pathogenicity.CONCLUSION Mutations in LAMA2 are associated with the clinical phenotype of increased neonatal CK levels,for which no specific treatment exists.Whole genome sequen-cing facilitates early diagnosis.