Rivers can act as reservoirs of highly resistant strains and facilitate the dissemination of resistance, virulence and integron 1 genes. A cross-sectional study was carried out where 318 water samples were collected (...Rivers can act as reservoirs of highly resistant strains and facilitate the dissemination of resistance, virulence and integron 1 genes. A cross-sectional study was carried out where 318 water samples were collected (53 from each site) and from the samples, 318 E. coli isolates were analysed for resistance genes, virulence genes and integron 1 using Polymerase Chain Reaction. 22% of the isolates had blaTEM, 33% had blaCTX-M and 28% had blaCMY. Prevalence of typical Enteropathogenic E. coli strains (carrying both eae and bfp genes) was 5% while the prevalence of atypical Enteropathogenic E. coli (carying only eae) was 1.8%. The prevalence of Enteroaggregative E. coli carrying the aggr genes was 11%. The prevalence of Enterotoxigenic E. coli encoding only lt toxin was 16 (5%) and while those carrying only st toxin was 6.9%. The prevalence of Enteroinvasive E. coli strains encoding as IpaH was 5% while that of strains, adherent invasive E. coli, carrying adherent invasive gene inv was 8.7%. 36% isolates were positive for class 1 integrons which were mostly isolated near the sewage effluent from waste treatment plant. Anthropogenic activities and close proximity to sewage treatment plant were found to play a key role in pollution of water body and accumulation of resistance and virulence genes. These results suggest that waste treatment plant may act as reservoir of resistance, virulence and integron 1 genes and is a potential risk to human and animal health in the region.展开更多
Antimicrobial use in agriculture, livestock and human health has increased over the years leading to the increase in antimicrobial resistance that can also find its way to the aquatic environment. Rivers can act as re...Antimicrobial use in agriculture, livestock and human health has increased over the years leading to the increase in antimicrobial resistance that can also find its way to the aquatic environment. Rivers can act as reservoirs of highly resistant strains and facilitate the dissemination of multidrug resistant (MDR) strains to animals and humans using water. A total of 318 water samples were collected from six different sampling points along Athi River and E. coli isolates were subjected to Kirby-Bauer diffusion method for antimicrobial susceptibility testing. The total mean coliform count of the sampled sites was 2.7 × 104 (cfu/mL). E. coli isolates were most resistant to ampicillin (63.8%) and most susceptible to gentamicin (99.4%). MDR strains (resistance to ≥3 classes of antibiotics) accounted for 65.4% of all the isolates. The site recorded to have human industrial and agricultural zone activities had strains that were significantly more resistant to ampicillin, cefoxitin, amoxicillin/clavulanic acid (P ≤ 0.05) than isolates from the section of the river traversing virgin land and land with minimum human activities. This study indicates that E. coli strains isolated from Athi River were highly MDR and most resistant to some antimicrobial classes (ampicillin and cefoxitin) which constitute a potential risk to human and animal health.展开更多
The paper presents results of a study on the sediment supply and movement of highly turbid sediment plume within Malindi Bay in the Northern region of the Kenya coast. The current velocities, tidal elevation, salinity...The paper presents results of a study on the sediment supply and movement of highly turbid sediment plume within Malindi Bay in the Northern region of the Kenya coast. The current velocities, tidal elevation, salinity and suspended sediment concentrations (TSSC) were measured in stations located within the bay using Aanderaa Recording Current Meter (RCM-9), Turbidity Sensor mounted on RCM-9, Divers Gauges and Aanderaa Tempera- ture-Salinity Meter. The study established that Malindi Bay receives a high terrigenous sedi- ment load amounting to 5.7 x 106 ton.yr-1. The river freshwater supply into the bay is highly variable ranging from 7 to 680 m3.s-1. The high flows that are 〉 150 m3.s^-1 occurred in May during the South East Monsoon (SEM). Relatively low peak flows occurred in November during the North East Monsoon (NEM) but these were usually 〈70 m3.s^-1. The discharge of highly turbidity river water into the bay in April and May occurs in a period of high intensity SEM winds that generate strong north flowing current that transports the river sediment plume northward. However, during the NEM, the river supply of turbid water is relatively low occur- ring in a period of relatively low intensity NEM winds that result in relatively weaker south flowing current that transports the sediment plume southward. The mechanism of advection of the sediment plume north or south of the estuary is mainly thought to be due to the Ekman transport generated by the onshore monsoon winds. Limited movement of the river sediment plume southward towards Ras Vasco Da Gama during NEM has ensured that the coral reef ecosystem in the northern parts of Malindi Marine National Park has not been completely destroyed by the influx of terrigenous sediments. However, to the north there is no coral reef ecosystem. The high sediment discharge into Malindi Bay can be attributed to land use change in the Athi-Sabaki River Basin in addition to rapid population increase which has led to clearance of forests to open land for agriculture, livestock grazing and settlement. The problems of heavy siltation in the bay can be addressed by implementing effective soil con- servation programmes in the Athi-Sabaki Basin. However, the soil conservation programmes in the basin are yet to succeed due to widespread poverty among the inhabitants and the complications brought about by climate change.展开更多
文摘Rivers can act as reservoirs of highly resistant strains and facilitate the dissemination of resistance, virulence and integron 1 genes. A cross-sectional study was carried out where 318 water samples were collected (53 from each site) and from the samples, 318 E. coli isolates were analysed for resistance genes, virulence genes and integron 1 using Polymerase Chain Reaction. 22% of the isolates had blaTEM, 33% had blaCTX-M and 28% had blaCMY. Prevalence of typical Enteropathogenic E. coli strains (carrying both eae and bfp genes) was 5% while the prevalence of atypical Enteropathogenic E. coli (carying only eae) was 1.8%. The prevalence of Enteroaggregative E. coli carrying the aggr genes was 11%. The prevalence of Enterotoxigenic E. coli encoding only lt toxin was 16 (5%) and while those carrying only st toxin was 6.9%. The prevalence of Enteroinvasive E. coli strains encoding as IpaH was 5% while that of strains, adherent invasive E. coli, carrying adherent invasive gene inv was 8.7%. 36% isolates were positive for class 1 integrons which were mostly isolated near the sewage effluent from waste treatment plant. Anthropogenic activities and close proximity to sewage treatment plant were found to play a key role in pollution of water body and accumulation of resistance and virulence genes. These results suggest that waste treatment plant may act as reservoir of resistance, virulence and integron 1 genes and is a potential risk to human and animal health in the region.
文摘Antimicrobial use in agriculture, livestock and human health has increased over the years leading to the increase in antimicrobial resistance that can also find its way to the aquatic environment. Rivers can act as reservoirs of highly resistant strains and facilitate the dissemination of multidrug resistant (MDR) strains to animals and humans using water. A total of 318 water samples were collected from six different sampling points along Athi River and E. coli isolates were subjected to Kirby-Bauer diffusion method for antimicrobial susceptibility testing. The total mean coliform count of the sampled sites was 2.7 × 104 (cfu/mL). E. coli isolates were most resistant to ampicillin (63.8%) and most susceptible to gentamicin (99.4%). MDR strains (resistance to ≥3 classes of antibiotics) accounted for 65.4% of all the isolates. The site recorded to have human industrial and agricultural zone activities had strains that were significantly more resistant to ampicillin, cefoxitin, amoxicillin/clavulanic acid (P ≤ 0.05) than isolates from the section of the river traversing virgin land and land with minimum human activities. This study indicates that E. coli strains isolated from Athi River were highly MDR and most resistant to some antimicrobial classes (ampicillin and cefoxitin) which constitute a potential risk to human and animal health.
基金funded by START and implemented as part of IGBP-LOICZ AfriCat Pilot project on the ‘Coastal Impacts of Damming and Water Abstraction in Africa’
文摘The paper presents results of a study on the sediment supply and movement of highly turbid sediment plume within Malindi Bay in the Northern region of the Kenya coast. The current velocities, tidal elevation, salinity and suspended sediment concentrations (TSSC) were measured in stations located within the bay using Aanderaa Recording Current Meter (RCM-9), Turbidity Sensor mounted on RCM-9, Divers Gauges and Aanderaa Tempera- ture-Salinity Meter. The study established that Malindi Bay receives a high terrigenous sedi- ment load amounting to 5.7 x 106 ton.yr-1. The river freshwater supply into the bay is highly variable ranging from 7 to 680 m3.s-1. The high flows that are 〉 150 m3.s^-1 occurred in May during the South East Monsoon (SEM). Relatively low peak flows occurred in November during the North East Monsoon (NEM) but these were usually 〈70 m3.s^-1. The discharge of highly turbidity river water into the bay in April and May occurs in a period of high intensity SEM winds that generate strong north flowing current that transports the river sediment plume northward. However, during the NEM, the river supply of turbid water is relatively low occur- ring in a period of relatively low intensity NEM winds that result in relatively weaker south flowing current that transports the sediment plume southward. The mechanism of advection of the sediment plume north or south of the estuary is mainly thought to be due to the Ekman transport generated by the onshore monsoon winds. Limited movement of the river sediment plume southward towards Ras Vasco Da Gama during NEM has ensured that the coral reef ecosystem in the northern parts of Malindi Marine National Park has not been completely destroyed by the influx of terrigenous sediments. However, to the north there is no coral reef ecosystem. The high sediment discharge into Malindi Bay can be attributed to land use change in the Athi-Sabaki River Basin in addition to rapid population increase which has led to clearance of forests to open land for agriculture, livestock grazing and settlement. The problems of heavy siltation in the bay can be addressed by implementing effective soil con- servation programmes in the Athi-Sabaki Basin. However, the soil conservation programmes in the basin are yet to succeed due to widespread poverty among the inhabitants and the complications brought about by climate change.