Objective Vasculogenic mimicry(VM)is a novel vasculogenic process integral to glioma stem cells(GSCs)in glioblastoma(GBM).However,the relationship between VM and ataxia-telangiectasia mutated(ATM)serine/threonine kina...Objective Vasculogenic mimicry(VM)is a novel vasculogenic process integral to glioma stem cells(GSCs)in glioblastoma(GBM).However,the relationship between VM and ataxia-telangiectasia mutated(ATM)serine/threonine kinase activation,which confers chemoradiotherapy resistance,remains unclear.Methods We investigated VM formation and phosphorylated ATM(pATM)levels by CD31/GFAPperiodic acid-Schiff dual staining and immunohistochemical staining in 145 GBM specimens.Glioma stem-like cells(GSLCs)derived from the formatted spheres of U87 and U251 cell lines and their pATM level and VM formation ability were examined using western blot and three-dimensional culture.For the examination of the function of pATM in VM formation by GSLCs,ATM knockdown by shRNAs and deactivated via ATM phosphorylation inhibitor KU55933 were studied.Results VM and high pATM expression occurred in 38.5% and 41.8% of tumors,respectively,and were significantly associated with reduced progression-free and overall survival.Patients with VM-positive GBMs exhibited higher pATM levels(r_(s)=0.425,P=0.01).The multivariate analysis established VM as an independent negative prognostic factor(P=0.002).Furthermore,GSLCs expressed high levels of pATM and formed vascular-like networks in vitro.ATM inactivation or knockdown hindered VM-like network formation concomitant with the downregulation of pVEGFR-2,VE-cadherin,and laminin B2.Conclusion VM may predict a poor GBM prognosis and is associated with pATM expression.We propose that pATM promotes VM through extracellular matrix modulation and VE-Cadherin/pVEGFR-2 activation,thereby highlighting ATM activation as a potential target for enhancing anti-angiogenesis therapies for GBM.展开更多
基金This study was supported by the Hunan Provincial Natural Science Foundation of China[grant number 2021JC0009]the Natural Science Foundation of China[grant number U2142212]the National Key R&D Program of China[grant number 2022YFC3004200].
基金supported by the Natural Science Foundation of Anhui Province(2208085MH250,2308085MH272)National Key Research and Development Program of China(2021YFF1201000)+2 种基金Natural Science Research Project of the Anhui Educational Committee(2023AH040404,2023AH053402)Anhui Provincial Health and Medical Research Project(AHWJ2023A10143)Research Funds of Centre for Leading Medicine and Advanced Technologies of IHM(2023IHM01043)。
文摘Objective Vasculogenic mimicry(VM)is a novel vasculogenic process integral to glioma stem cells(GSCs)in glioblastoma(GBM).However,the relationship between VM and ataxia-telangiectasia mutated(ATM)serine/threonine kinase activation,which confers chemoradiotherapy resistance,remains unclear.Methods We investigated VM formation and phosphorylated ATM(pATM)levels by CD31/GFAPperiodic acid-Schiff dual staining and immunohistochemical staining in 145 GBM specimens.Glioma stem-like cells(GSLCs)derived from the formatted spheres of U87 and U251 cell lines and their pATM level and VM formation ability were examined using western blot and three-dimensional culture.For the examination of the function of pATM in VM formation by GSLCs,ATM knockdown by shRNAs and deactivated via ATM phosphorylation inhibitor KU55933 were studied.Results VM and high pATM expression occurred in 38.5% and 41.8% of tumors,respectively,and were significantly associated with reduced progression-free and overall survival.Patients with VM-positive GBMs exhibited higher pATM levels(r_(s)=0.425,P=0.01).The multivariate analysis established VM as an independent negative prognostic factor(P=0.002).Furthermore,GSLCs expressed high levels of pATM and formed vascular-like networks in vitro.ATM inactivation or knockdown hindered VM-like network formation concomitant with the downregulation of pVEGFR-2,VE-cadherin,and laminin B2.Conclusion VM may predict a poor GBM prognosis and is associated with pATM expression.We propose that pATM promotes VM through extracellular matrix modulation and VE-Cadherin/pVEGFR-2 activation,thereby highlighting ATM activation as a potential target for enhancing anti-angiogenesis therapies for GBM.