There are many types of atmospheric heat engines in land-air systems.The accurate definition,calculation and interpretation of the efficiency of atmospheric heat engines are key to understanding energy transfer and tr...There are many types of atmospheric heat engines in land-air systems.The accurate definition,calculation and interpretation of the efficiency of atmospheric heat engines are key to understanding energy transfer and transformation of landair systems.The atmosphere over the Qinghai-Tibet Plateau(QTP)in summer can be regarded as a positive heat engine.The study of the heat engine efficiency is helpful to better understand land-air interaction and thermal-dynamic processes on the QTP.It also provides a new perspective to explain the impact of the QTP on the climate of China,East Asia and even the world.In this paper,we used MOD08 and ERA5 reanalysis data to calculate the atmospheric heat engine efficiency,surface heat source and atmospheric heat source on the QTP in summer(May to September)from 2000 to 2020.The average atmospheric heat engine efficiency on the QTP in summer from 2000 to 2020 varies between 1.2%and 1.5%,which is less than 1.6%;the heat engine efficiency in summer is higher than that in June,July and August;the Qaidam Basin is the region with the highest atmospheric heat engine efficiency,followed by the western QTP.The mean surface heat source on the QTP in summer from 2000 to 2020 is 96.0 W m^(−2),the atmospheric heat source is 90.7 W m^(−2),and the release of precipitation condensation latent heat is the most important component of the atmospheric heat source on the QTP in summer.There is a strong and significant positive correlation between the atmospheric heat engine efficiency and the surface heat source on the QTP in summer.The precipitation condensation latent heat is the most important component of the atmospheric heat source in summer and can reflect the precipitation process.There is a strong and significant negative correlation between the atmospheric heat engine efficiency and the atmospheric heat source on the QTP in summer.展开更多
基金This work was supported by the Second Tibetan Plateau Scientific Expedition and Research Program(Grant No.2019QZKK010303)the Numerical Simulation of the Effect of Soil Temperature on Precipitation Prediction(Grant No.QHMS2019015).
文摘There are many types of atmospheric heat engines in land-air systems.The accurate definition,calculation and interpretation of the efficiency of atmospheric heat engines are key to understanding energy transfer and transformation of landair systems.The atmosphere over the Qinghai-Tibet Plateau(QTP)in summer can be regarded as a positive heat engine.The study of the heat engine efficiency is helpful to better understand land-air interaction and thermal-dynamic processes on the QTP.It also provides a new perspective to explain the impact of the QTP on the climate of China,East Asia and even the world.In this paper,we used MOD08 and ERA5 reanalysis data to calculate the atmospheric heat engine efficiency,surface heat source and atmospheric heat source on the QTP in summer(May to September)from 2000 to 2020.The average atmospheric heat engine efficiency on the QTP in summer from 2000 to 2020 varies between 1.2%and 1.5%,which is less than 1.6%;the heat engine efficiency in summer is higher than that in June,July and August;the Qaidam Basin is the region with the highest atmospheric heat engine efficiency,followed by the western QTP.The mean surface heat source on the QTP in summer from 2000 to 2020 is 96.0 W m^(−2),the atmospheric heat source is 90.7 W m^(−2),and the release of precipitation condensation latent heat is the most important component of the atmospheric heat source on the QTP in summer.There is a strong and significant positive correlation between the atmospheric heat engine efficiency and the surface heat source on the QTP in summer.The precipitation condensation latent heat is the most important component of the atmospheric heat source in summer and can reflect the precipitation process.There is a strong and significant negative correlation between the atmospheric heat engine efficiency and the atmospheric heat source on the QTP in summer.