Earthquake prediction is a difficult problem in Earth sciences.Unsuccessful predictions one after another urged people to explore more synthetic and comprehensive methods for earthquake prediction.The Lithosphere-Atmo...Earthquake prediction is a difficult problem in Earth sciences.Unsuccessful predictions one after another urged people to explore more synthetic and comprehensive methods for earthquake prediction.The Lithosphere-Atmosphere-Ionosphere(LAI)coupling theory pays great attention to the processes taking place within the near ground layer of atmosphere.It has achieved great results recently,and can enlighten us about the nature of an earthquake's precursor.Based on the NCEP reanalysis dataset,this paper attempts to track the anomalies of the surface's upward long wave radiation flux(ULWRF),the temperature at the depth of 10cm~20cm below ground surface layer(BGL)and the air temperature at 2 meters above ground surface(AIR)around the time of the strong Wenchuan earthquake.Thermal anomalies were observed before and after May 12,2008,the time of the Wenchuan earthquake.Perhaps the thermal anomaly that occurred prior to the earthquake can be taken as indicators of the earthquake,but in view of the complexity of the earthquake phenomena,using thermal anomaly as a precursor should be done with caution.展开更多
In this paper, we focus on ionospheric absorption in the East Asia sector, and look for manifestations of atmospheric influences in this area. First, a 4-year historical record of absorption measurement at Beijing is ...In this paper, we focus on ionospheric absorption in the East Asia sector, and look for manifestations of atmospheric influences in this area. First, a 4-year historical record of absorption measurement at Beijing is presented. This record was obtained by a sweep frequency technique, in which 27-days periodic variation of the absorption level was found to be dominant, appearing in most seasons except winters. Instead, unusual enhancements of the absorption level appeared in winters (winter anomaly), at the meantime the level varied with periods mainly in the range of 8-12 days. Comparing to 27-days period from the Sun, the shorter period oscillations should be related to planetary wave activities in lower atmosphere. Second, fmin data from 5 mid-latitude ionosondes in Japan were used as an indirect but long-term measurement. With the fmin data covering two solar cycles, disturbances with various periods were found to be active around solar maximum years, but the 8-12 days oscillations always existed in winter, showing seasonal dependence instead of connection to solar activity. These results given in this paper demonstrate seasonal and solar cycle-dependent features of the ionospheric absorption in East Asia sector, and confirm the existence of influence from atmosphere-ionosphere coupling in this area, as well as the relationship between ionospheric winter anomaly and planetary wave activity.展开更多
文摘Earthquake prediction is a difficult problem in Earth sciences.Unsuccessful predictions one after another urged people to explore more synthetic and comprehensive methods for earthquake prediction.The Lithosphere-Atmosphere-Ionosphere(LAI)coupling theory pays great attention to the processes taking place within the near ground layer of atmosphere.It has achieved great results recently,and can enlighten us about the nature of an earthquake's precursor.Based on the NCEP reanalysis dataset,this paper attempts to track the anomalies of the surface's upward long wave radiation flux(ULWRF),the temperature at the depth of 10cm~20cm below ground surface layer(BGL)and the air temperature at 2 meters above ground surface(AIR)around the time of the strong Wenchuan earthquake.Thermal anomalies were observed before and after May 12,2008,the time of the Wenchuan earthquake.Perhaps the thermal anomaly that occurred prior to the earthquake can be taken as indicators of the earthquake,but in view of the complexity of the earthquake phenomena,using thermal anomaly as a precursor should be done with caution.
基金supported by the National Natural Science Foundation of China (Grant No. 40904036)the Public Science and Technology Research Funds Projects of Ocean, State Oceanic Administration of China (Grant No. 201005017)+1 种基金the National Basic Research Program of China ("973" Project) (Grant No. 2011CB811405)the Specialized Research Fund for State Key Laboratories
文摘In this paper, we focus on ionospheric absorption in the East Asia sector, and look for manifestations of atmospheric influences in this area. First, a 4-year historical record of absorption measurement at Beijing is presented. This record was obtained by a sweep frequency technique, in which 27-days periodic variation of the absorption level was found to be dominant, appearing in most seasons except winters. Instead, unusual enhancements of the absorption level appeared in winters (winter anomaly), at the meantime the level varied with periods mainly in the range of 8-12 days. Comparing to 27-days period from the Sun, the shorter period oscillations should be related to planetary wave activities in lower atmosphere. Second, fmin data from 5 mid-latitude ionosondes in Japan were used as an indirect but long-term measurement. With the fmin data covering two solar cycles, disturbances with various periods were found to be active around solar maximum years, but the 8-12 days oscillations always existed in winter, showing seasonal dependence instead of connection to solar activity. These results given in this paper demonstrate seasonal and solar cycle-dependent features of the ionospheric absorption in East Asia sector, and confirm the existence of influence from atmosphere-ionosphere coupling in this area, as well as the relationship between ionospheric winter anomaly and planetary wave activity.