The Bohai Sea is extremely susceptible to storm surges induced by extratropical storms and tropical cyclones in nearly every season. In order to relieve the impacts of storm surge disasters on structures and human liv...The Bohai Sea is extremely susceptible to storm surges induced by extratropical storms and tropical cyclones in nearly every season. In order to relieve the impacts of storm surge disasters on structures and human lives in coastal regions, it is very important to understand the occurring of the severe storm surges. The previous research is mostly restricted to a single type of storm surge caused by extratropical storm or tropical cyclone. In present paper, a coupled atmosphere-ocean model is developed to study the storm surges induced by two types of extreme weather conditions. Two special cases happened in the Bohai Sea are simulated successively. The wind intensity and minimum sea-level pressure derived from the Weather Research and Forecasting (WRF) model agree well with the observed data. The computed time series of water level obtained from the Regional Ocean Modeling System (ROMS) also are in good agreement with the tide gauge observations. The structures of the wind fields and average currents for two types of storm surges are analyzed and compared. The results of coupled model are compared with those from the uncoupled model. The case studies indicate that the wind field and structure of the ocean surface current have great differences between extratropical storm surge and typhoon storm surge. The magnitude of storm surge in the Bohai Sea is shown mainly determined by the ocean surface driving force, but greatly affected by the coastal geometry and bathymetry.展开更多
A box model of the interhemispheric thermohaline circulation (THC) in atmosphere-ocean for global cli-mate is considered. By using the multi-scales method, the asymptotic solution of a simplified weakly nonlinear mode...A box model of the interhemispheric thermohaline circulation (THC) in atmosphere-ocean for global cli-mate is considered. By using the multi-scales method, the asymptotic solution of a simplified weakly nonlinear model is discussed. Firstly, by introducing first scale, the zeroth order approximate solution of the model is obtained. Sec-ondly, by using the multi-scales, the first order approximate equation of the model is found. Finally, second order ap-proximate equation is formed to eliminate the secular terms, and a uniformly valid asymptotic expansion of solution is decided. The multi-scales solving method is an analytic method which can be used to analyze operation sequentially. And then we can also study the diversified qualitative and quantitative behaviors for corresponding physical quantities. This paper aims at providing a valid method for solving a box model of the nonlinear equation.展开更多
In this paper, the coupling schemes of atmosphere-ocean climate models are discussed with one-dimensional advection equations. The convergence and stability for synchronous and asynchronous schemes are demonstrated an...In this paper, the coupling schemes of atmosphere-ocean climate models are discussed with one-dimensional advection equations. The convergence and stability for synchronous and asynchronous schemes are demonstrated and compared.Conclusions inferred from the analysis are given below. The synchronous scheme as well as the asynchronous-implicit scheme in this model are stable for arbitrary integrating time intervals. The asynchronous explicit scheme is unstable under certain conditions, which depend upon advection velocities and heat exchange parameters in the atmosphere and oceans. With both synchronous and asynchronous stable schemes the discrete solutions converge to their unique exact ones. Advections in the atmosphere and ocean accelerate the rate of convergence of the asynchronous-implicit scheme. It is suggusted that the asynchronous-implicit coupling scheme is a stable and efficient method for most climatic simulations.展开更多
El Nino-Southern Oscillation(ENSO),the leading mode of global interannual variability,usually intensifies the Hadley Circulation(HC),and meanwhile constrains its meridional extension,leading to an equatorward movement...El Nino-Southern Oscillation(ENSO),the leading mode of global interannual variability,usually intensifies the Hadley Circulation(HC),and meanwhile constrains its meridional extension,leading to an equatorward movement of the jet system.Previous studies have investigated the response of HC to ENSO events using different reanalysis datasets and evaluated their capability in capturing the main features of ENSO-associated HC anomalies.However,these studies mainly focused on the global HC,represented by a zonal-mean mass stream function(MSF).Comparatively fewer studies have evaluated HC responses from a regional perspective,partly due to the prerequisite of the Stokes MSF,which prevents us from integrating a regional HC.In this study,we adopt a recently developed technique to construct the three-dimensional structure of HC and evaluate the capability of eight state-of-the-art reanalyses in reproducing the regional HC response to ENSO events.Results show that all eight reanalyses reproduce the spatial structure of HC responses well,with an intensified HC around the central-eastern Pacific but weakened circulations around the Indo-Pacific warm pool and tropical Atlantic.The spatial correlation coefficient of the three-dimensional HC anomalies among the different datasets is always larger than 0.93.However,these datasets may not capture the amplitudes of the HC responses well.This uncertainty is especially large for ENSO-associated equatorially asymmetric HC anomalies,with the maximum amplitude in Climate Forecast System Reanalysis(CFSR)being about 2.7 times the minimum value in the Twentieth Century Reanalysis(20CR).One should be careful when using reanalysis data to evaluate the intensity of ENSO-associated HC anomalies.展开更多
A box model of the interhemispheric thermohaline circulation (THC) in atmosphere-ocean for global climate is considered. By using the generalized variational iteration method, the approximate solution of a simplifie...A box model of the interhemispheric thermohaline circulation (THC) in atmosphere-ocean for global climate is considered. By using the generalized variational iteration method, the approximate solution of a simplified nonlinear model is studied. The generalized variational iteration method is an analytic method, and the obtained analytic solution can be operated sequentially. The authors also diversify qualitative and quantitative behaviors for corresponding physical quantities.展开更多
In a real climate system there are multiple time-space scale atmosphere-ocean interactions, ranging from the planetary scale and basin scale to local air-sea interactions. The Zebiak-Cane (ZC) model with one-level atm...In a real climate system there are multiple time-space scale atmosphere-ocean interactions, ranging from the planetary scale and basin scale to local air-sea interactions. The Zebiak-Cane (ZC) model with one-level atmosphere described only local air-sea interaction process. Thus the planetary scale Hadley cell and Walker cell anomalies should be introduced in the model. Including the planetary scale Hadley cell anomaly in the model improved the prediction skill. It showed that the improved model provided satisfactory prediction of the equatorial eastern Pacific SST anomaly with lead time of 9-10 months not only for 1970-1991 but also for 1992-1995.展开更多
This study unveils the evolution of two major early signals in the North Pacific atmosphere-ocean system that heralded abnormal high-pressure blockings and cold-vortex activities across Northeast China, based on an an...This study unveils the evolution of two major early signals in the North Pacific atmosphere-ocean system that heralded abnormal high-pressure blockings and cold-vortex activities across Northeast China, based on an analysis of the configurations of major modes including the polar vortex, the North Pacific Oscillation (NPO), and SST in the preceding winter and spring and atmospheric low-frequency disturbances in Northeast China. We analyzed these aspects to understand the atmosphere ocean physical coupling processes characterized by the two early signals, and here we explain the possible mechanisms through which dipole circulation anomalies affect the summer low-temperature processes in Northeast China. We further analyzed the interdecadal variation background and associated physical processes of the two early signals.展开更多
Simulations of tropical intraseasonal oscillation (TISO) in SAMIL, the Spectral Atmospheric Model from the Institute of Atmospheric Physics (IAP) State Key Laboratory of Numerical Modeling for Atmospheric Sciences...Simulations of tropical intraseasonal oscillation (TISO) in SAMIL, the Spectral Atmospheric Model from the Institute of Atmospheric Physics (IAP) State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG) coupled and uncoupled general circulation models were comprehensively evaluated in this study. Compared to the uncoupled model, the atmosphere-ocean coupled model improved the TISO simulation in the following aspects: (1) the spectral intensity for the 30-80-day peak eastward periods was more realistic; (2) the eastward propagation signals over western Pacific were stronger; and (3) the variance distribution and stronger signals of Kelvin waves and mixed Rossby gravity waves were more realistic. Better performance in the coupled run was assumed to be associated with a better mean state and a more realistic relationship between precipitation and SST. In both the coupled and uncoupled runs, the unrealistic simulation of the eastward propagation over the equatorial Indian Ocean might have been associated with the biases of the precipitation mean state over the Indian Ocean, and the unrealistic split of maximum TISO precipitation variance over the Pacific might have corresponded to the exaggeration of the double Intertropical Convergence Zone (ITCZ) structure in precipitation mean state. However, whether a better mean state leads to better TISO activity remains questionable. Notably, the northward propagation over the Indian Ocean during summer was not improved in the mean lead-lag correlation analysis, but case studies have shown some strong cases to yield remarkably realistic northward propagation in coupled runs.展开更多
A mesoscale coupled atmosphere–ocean model has been developed based on the GRAPES(Global and Regional Assimilation and Prediction System) regional typhoon model(GRAPES_TYM) and ECOM-si(estuary, coast and ocean m...A mesoscale coupled atmosphere–ocean model has been developed based on the GRAPES(Global and Regional Assimilation and Prediction System) regional typhoon model(GRAPES_TYM) and ECOM-si(estuary, coast and ocean model(semi-implicit)). Coupling between the typhoon and ocean models was conducted by exchanging wind stress, heat, moisture fluxes, and sea surface temperatures(SSTs) using the coupler OASIS3.0. Numerical prediction experiments were run with and without coupling for the case of Typhoon Muifa in the western North Pacific. To investigate the impact of using more accurate SST information on the simulation of the track and the intensity of Typhoon Muifa, experiments were also conducted using increased SST resolution in the initial condition field of the control test. The results indicate that increasing SST resolution in the initial condition field somewhat improved the intensity forecast, and use of the coupled model improved the intensity forecast significantly, with mean absolute errors in maximum wind speed within 48 and 72 h reduced by 32% and 20%, respectively. Use of the coupled model also resulted in less pronounced over-prediction of the intensity of Typhoon Muifa by the GRAPES_TYM. Moreover, the effects of using the coupled model on the intensity varied throughout the different stages of the development of Muifa owing to changes in the oceanic mixed layer depth. The coupled model had pronounced effects during the later stage of Muifa but had no obvious effects during the earlier stage. The SSTs predicted by the coupled model decreased by about 5–6℃ at most after the typhoon passed, in agreement with satellite data. Furthermore, based on analysis on the sea surface heat flux, wet static energy of the boundary layer, atmospheric temperature, and precipitation forecasted by the coupled model and the control test, the simulation results of this coupled atmosphere–ocean model can be considered to reasonably reflect the primary mechanisms underlying the interactions between tropical cyclones and oceans.展开更多
The thermally and wind-driven ocean circulation is a complicated natural phenomenon in the atmospheric physics. Hence we need to reduce it using basic models and solve the models using approximate methods. A non-linea...The thermally and wind-driven ocean circulation is a complicated natural phenomenon in the atmospheric physics. Hence we need to reduce it using basic models and solve the models using approximate methods. A non-linear model of the thermally and wind-driven ocean circulation is used in this paper. The results show that the zero solution of the linear equation is a stable focus point, which is the path curve trend origin point as time (t) trend to infinity. By using the homotopic mapping perturbation method, the exact solution of the model is obtained. The homotopic mapping perturbation method is an analytic solving method, so the obtained solution can be used for analytic operating sequentially. And then we can also obtain the diversified qualitative and quantitative behaviors for corresponding physical quantities.展开更多
The authors review recent advances in the development of coupled Regional Earth System Models (RESMs),a field that is still in its early stages.To date,coupled regional atmosphere-ocean-sea ice,atmosphere-aerosol an...The authors review recent advances in the development of coupled Regional Earth System Models (RESMs),a field that is still in its early stages.To date,coupled regional atmosphere-ocean-sea ice,atmosphere-aerosol and atmosphere-biosphere models have been developed,but they have been applied onlyto limited regional settings.Much more work is thus needed to assess their transferability to a wide range of settings.Future challenges in regional climate modeling are identified,including the development of fully coupled RESMs encompassing not only atmosphere,ocean,cryosphere,biosphere,chemosphere,but also the human component in a fully interactive way.展开更多
Simulations of the interdecadal variations of summer rainfall over China are assessed from 5 coupled AOGCMs from the Data Distribution Center (DDC) of the Intergovernmental Panel in Climate Change (IPCC) under the IPC...Simulations of the interdecadal variations of summer rainfall over China are assessed from 5 coupled AOGCMs from the Data Distribution Center (DDC) of the Intergovernmental Panel in Climate Change (IPCC) under the IPCC-Special Report in Emission Scenarios (SRES) A2 and B2 scenario. We examined their ability in simulating the interdecadal variations of summer precipitation over China from 1951 to 1990. The difference before and after the mid-1960’s and the late 1970’s is given respectively to check the capability of the models, especially in reproducing the rainfall jump in North China. We also investigated the interdecadal variations simulated by the models in the 1990’s and the average of 2001-2020 in the future under the scenario A2 and B2. The analysis shows that the current AOGCMs is not good enough in simulating the interdecadal variations of summer precipitation in China. The interdecadal variations of summer rainfall simulated by most of the models cannot reproduce the observation in North China. Higher resolution models are suggested to well simulate the interdecadal variability in regional scale.展开更多
The role of halted "baroclinic modes" in the central equatorial Pacific is analyzed. It is found that dominant anomaly signals corresponding to "baroclinic modes" occur in the upper layer of the equatorial Pacific...The role of halted "baroclinic modes" in the central equatorial Pacific is analyzed. It is found that dominant anomaly signals corresponding to "baroclinic modes" occur in the upper layer of the equatorial Pacific, in a two-and-a-half layer oceanic model, in assimilated results of a simple OGCM and in the ADCP observation of TAO. A second "baroclinic mode" is halted in the central equatorial Pacific corresponding to a positive SST anomaly while the first "baroclinic mode" propagates eastwards in the eastern equatorial Pacific. The role of the halted second "baroclinic mode" in the central equatorial Pacific is explained by a staged ocean-atmosphere interaction mechanism in the formation of El Nifio: the westerly bursts in boreal winter over the western equatorial Pacific generate the halted second "baroclinic mode" in the central equatorial Pacific, leading to the increase of heat content and temperature in the upper layer of the central Pacific which induces the shift of convection from over the western equatorial Pacific to the central equatorial Pacific; another wider, westerly anomaly burst is induced over the western region of convection above the central equatorial Pacific and the westerly anomaly burst generates the first "baroclinic mode" propagating to the eastern equatorial Pacific, resulting in a warm event in the eastern equatorial Pacific. The mechanism presented in this paper reveals that the central equatorial Pacific is a key region in detecting the possibility of ENSO and, by analyzing TAO observation data of ocean currents and temperature in the central equatorial Pacific, in predicting the coming of an El Nino several months ahead.展开更多
This paper reviews the historic understanding of the predictability of atmospheric and oceanic motions, and interprets it in a general framework. On this basis, the existing challenges and unsolved problems in the stu...This paper reviews the historic understanding of the predictability of atmospheric and oceanic motions, and interprets it in a general framework. On this basis, the existing challenges and unsolved problems in the study of the intrinsic predictability limit(IPL) of weather and climate events of different spatio-temporal scales are summarized. Emphasis is also placed on the structure of the initial error and model parameter errors as well as the associated targeting observation issue. Finally, the predictability of atmospheric and oceanic motion in the ensemble-probabilistic methods widely used in current operational forecasts are discussed.The necessity of considering IPLs in the framework of stochastic dynamic systems is also addressed.展开更多
The high-resolution Weather Research and Forecasting (WRF) model is coupled to the Princeton Ocean Model (POM) to investigate the effect of air-sea interaction during Typhoon Kaemi that formed in the Northwest Pac...The high-resolution Weather Research and Forecasting (WRF) model is coupled to the Princeton Ocean Model (POM) to investigate the effect of air-sea interaction during Typhoon Kaemi that formed in the Northwest Pacific at 0000 UTC 19 July 2006. The coupled model can reasonably reproduce the major features of ocean response to the moving tropical cyclone (TC) forcing, including the deepening of ocean mixed layer (ML), cooling of sea surface temperature (SST), and decaying of typhoon. Due to the appearance of maximum SST cooling to the left of the simulated typhoon track, two points respectively located to the left (16.25 N, 130.1 E, named as A, the maximum SST cooling region) and right (17.79 N, 130.43 E, named as B) of the typhoon track are taken as the sampling points to study the mechanisms of SST cooling. The low temperature at point A has a good correlation with the 10-m winds but does not persist for a long time, which illustrates that the temperature dropping produced by upwelling is a quick process. Although the wind-current resonance causes oscillations to the left of typhoon track at point A, the fluctuation is not so strong as that at point B. The thin ML and upwelling produced by the Ekman pumping from strong 10-m winds are the main reason of maximum SST cooling appearing to the left of the typhoon track. Due to weaker 10-m winds and thicker and warmer ML at point B, the colder water under the thermocline is surpressed and the temperature dropping is not dramatic when the strongest 10-m winds occur. Afterwards, the temperature gradually decreases, which is found to be caused by the inertial oscillations of the wind-current system.展开更多
Using the hindcasts provided by the Ensemble-Based Predictions of Climate Changes and Their Impacts(ENSEMBLES) project for the period of 1980–2005, the forecast capability of spring climate in China is assessed mainl...Using the hindcasts provided by the Ensemble-Based Predictions of Climate Changes and Their Impacts(ENSEMBLES) project for the period of 1980–2005, the forecast capability of spring climate in China is assessed mainly from the aspects of precipitation, 2-m air temperature, and atmospheric circulations. The ENSEMBELS can reproduce the climatology and dominant empirical orthogonal function(EOF) modes of precipitation and 2-m air temperature, with some differences arising from different initialization months. The multi-model ensemble(MME) forecast of interannual variability is of good performance in some regions such as eastern China with February initialization.The spatial patterns of the MME interannual and inter-member spreads for precipitation and 2-m air temperature are consistent with those of the observed interannual spread, indicating that internal dynamic processes have major impacts on the interannual anomaly of spring climate in China. We have identified two coupled modes between intermember anomalies of the 850-hPa vorticity in spring and sea surface temperature(SST) both in spring and at a lead of 2 months, of which the first mode shows a significant impact on the spring climate in China, with an anomalous anticyclone located over Northwest Pacific and positive precipitation and southwesterly anomalies in eastern China.Our results also suggest that the SST at a lead of two months may be a predictor for the spring climate in eastern China. A better representation of the ocean–atmosphere interaction over the tropical Pacific, Northwest Pacific, and Indian Ocean can improve the forecast skill of the spring climate in eastern China.展开更多
The wave-CISK condensation heating and evaporation heating over high SST can lead to the positive feedback of atmosphere-ocean coupled system, and the strong unstable Kelvin wave theory can explain the development pro...The wave-CISK condensation heating and evaporation heating over high SST can lead to the positive feedback of atmosphere-ocean coupled system, and the strong unstable Kelvin wave theory can explain the development process of the 1982—1983 ENSO.展开更多
Anthropogenic aerosols are effective radiative forcing agents that perturb the Earth’s climate. Major emission sources shifted from the western to eastern hemisphere around the 1980 s. An ensemble of single-forcing s...Anthropogenic aerosols are effective radiative forcing agents that perturb the Earth’s climate. Major emission sources shifted from the western to eastern hemisphere around the 1980 s. An ensemble of single-forcing simulations with an Earth System Model reveals two stages of aerosol-induced climate change in response to the global aerosol increase for 1940–1980 and the zonal shift of aerosol forcing for 1980–2020, respectively. Here, using idealized experiments with hierarchical models, we show that the aerosol increase and shift modes of aerosol-forced climate change are dynamically distinct, governed by the inter-hemispheric energy transport and basin-wide ocean–atmosphere interactions, respectively.The aerosol increase mode dominates in the motionless slab ocean model but is damped by ocean dynamics. Free of zonal-mean energy perturbation, characterized by an anomalous North Atlantic warming and North Pacific cooling, the zonal shift mode is amplified by interactive ocean dynamics through Bjerknes feedback. Both modes contribute to a La Ni?a-like pattern over the equatorial Pacific. We suggest that a global perspective that accommodates the evolving geographical distribution of aerosol emissions is vital for understanding the aerosol-forced historical climate change.展开更多
This paper investigates two methods of coupling fluids across an interface,motivated by air-sea interaction in application codes.One method is for sequential configurations,where the air code module in invoked over so...This paper investigates two methods of coupling fluids across an interface,motivated by air-sea interaction in application codes.One method is for sequential configurations,where the air code module in invoked over some time interval prior to the sea module.The other method is for concurrent setups,in which the air and sea modules run in parallel.The focus is the temporal representation of air-sea fluxes.The methods we study conserve moments of the fluxes,with an arbitrary order of accuracy possible in time.Different step sizes are allowed for the two fluid codes.An a posteriori stability indicator is defined,which can be computed efficiently on-the-fly over each coupling interval.For a model of two coupled fluids with natural heat convection,using finite elements in space,we prove the sufficiency of our stability indicator.Under certain conditions,we also prove that stability can be enforced by iteration when the coupling interval is small enough.In particular,for solutions in a certain class,we show that the step size scaling is no worse than O(h)in three dimensions of space,where Oh is a mesh parameter.This is a sharper result than what has been shown previously for related algorithms with finite element methods.Computational examples illustrate the behavior of the algorithms under a wide variety of configurations.展开更多
基金The National Natural Science Foundation of China under contract Nos 41372173 and 51609244the Geological Survey Projects of China Geological Survey under contract No.121201006000182401
文摘The Bohai Sea is extremely susceptible to storm surges induced by extratropical storms and tropical cyclones in nearly every season. In order to relieve the impacts of storm surge disasters on structures and human lives in coastal regions, it is very important to understand the occurring of the severe storm surges. The previous research is mostly restricted to a single type of storm surge caused by extratropical storm or tropical cyclone. In present paper, a coupled atmosphere-ocean model is developed to study the storm surges induced by two types of extreme weather conditions. Two special cases happened in the Bohai Sea are simulated successively. The wind intensity and minimum sea-level pressure derived from the Weather Research and Forecasting (WRF) model agree well with the observed data. The computed time series of water level obtained from the Regional Ocean Modeling System (ROMS) also are in good agreement with the tide gauge observations. The structures of the wind fields and average currents for two types of storm surges are analyzed and compared. The results of coupled model are compared with those from the uncoupled model. The case studies indicate that the wind field and structure of the ocean surface current have great differences between extratropical storm surge and typhoon storm surge. The magnitude of storm surge in the Bohai Sea is shown mainly determined by the ocean surface driving force, but greatly affected by the coastal geometry and bathymetry.
基金Under the auspices of National Natural Science Foundation of China (No. 40676016, No. 10471039)National Key Project for Basics Research (No. 2003CB415101-03, No. 2004CB418304)+1 种基金Key Project of Chinese Academy of Sciences (No. KZCX3-SW-221)E-Insitutes of Shanghai Municipal Education Commission (No. E03004)
文摘A box model of the interhemispheric thermohaline circulation (THC) in atmosphere-ocean for global cli-mate is considered. By using the multi-scales method, the asymptotic solution of a simplified weakly nonlinear model is discussed. Firstly, by introducing first scale, the zeroth order approximate solution of the model is obtained. Sec-ondly, by using the multi-scales, the first order approximate equation of the model is found. Finally, second order ap-proximate equation is formed to eliminate the secular terms, and a uniformly valid asymptotic expansion of solution is decided. The multi-scales solving method is an analytic method which can be used to analyze operation sequentially. And then we can also study the diversified qualitative and quantitative behaviors for corresponding physical quantities. This paper aims at providing a valid method for solving a box model of the nonlinear equation.
文摘In this paper, the coupling schemes of atmosphere-ocean climate models are discussed with one-dimensional advection equations. The convergence and stability for synchronous and asynchronous schemes are demonstrated and compared.Conclusions inferred from the analysis are given below. The synchronous scheme as well as the asynchronous-implicit scheme in this model are stable for arbitrary integrating time intervals. The asynchronous explicit scheme is unstable under certain conditions, which depend upon advection velocities and heat exchange parameters in the atmosphere and oceans. With both synchronous and asynchronous stable schemes the discrete solutions converge to their unique exact ones. Advections in the atmosphere and ocean accelerate the rate of convergence of the asynchronous-implicit scheme. It is suggusted that the asynchronous-implicit coupling scheme is a stable and efficient method for most climatic simulations.
基金supported by the National Key Research and Development Program of China(Grant No.2018YFA0605703)the National Natural Science Foundation of China(Grant Nos.42176243,41976193 and 41676190)supported by National Natural Science Foundation of China(Grant No.41975079)。
文摘El Nino-Southern Oscillation(ENSO),the leading mode of global interannual variability,usually intensifies the Hadley Circulation(HC),and meanwhile constrains its meridional extension,leading to an equatorward movement of the jet system.Previous studies have investigated the response of HC to ENSO events using different reanalysis datasets and evaluated their capability in capturing the main features of ENSO-associated HC anomalies.However,these studies mainly focused on the global HC,represented by a zonal-mean mass stream function(MSF).Comparatively fewer studies have evaluated HC responses from a regional perspective,partly due to the prerequisite of the Stokes MSF,which prevents us from integrating a regional HC.In this study,we adopt a recently developed technique to construct the three-dimensional structure of HC and evaluate the capability of eight state-of-the-art reanalyses in reproducing the regional HC response to ENSO events.Results show that all eight reanalyses reproduce the spatial structure of HC responses well,with an intensified HC around the central-eastern Pacific but weakened circulations around the Indo-Pacific warm pool and tropical Atlantic.The spatial correlation coefficient of the three-dimensional HC anomalies among the different datasets is always larger than 0.93.However,these datasets may not capture the amplitudes of the HC responses well.This uncertainty is especially large for ENSO-associated equatorially asymmetric HC anomalies,with the maximum amplitude in Climate Forecast System Reanalysis(CFSR)being about 2.7 times the minimum value in the Twentieth Century Reanalysis(20CR).One should be careful when using reanalysis data to evaluate the intensity of ENSO-associated HC anomalies.
基金This research is supported by the National Natural Science Foundation of China under Grant Nos. 40576012 and 90111011, the State Key Development Program for Basics Research of China under Grant No. 2004CB418304, the Key Project of the Chinese Academy of Sciences under Grant No. KZCX3-SW-221 and in part by E- Institutes of Shanghai Municipal Education Commission under Grant No. E03004.
文摘A box model of the interhemispheric thermohaline circulation (THC) in atmosphere-ocean for global climate is considered. By using the generalized variational iteration method, the approximate solution of a simplified nonlinear model is studied. The generalized variational iteration method is an analytic method, and the obtained analytic solution can be operated sequentially. The authors also diversify qualitative and quantitative behaviors for corresponding physical quantities.
基金Project supported by the National 95 Scienct & Technology and the National Natural Science Foundation of China
文摘In a real climate system there are multiple time-space scale atmosphere-ocean interactions, ranging from the planetary scale and basin scale to local air-sea interactions. The Zebiak-Cane (ZC) model with one-level atmosphere described only local air-sea interaction process. Thus the planetary scale Hadley cell and Walker cell anomalies should be introduced in the model. Including the planetary scale Hadley cell anomaly in the model improved the prediction skill. It showed that the improved model provided satisfactory prediction of the equatorial eastern Pacific SST anomaly with lead time of 9-10 months not only for 1970-1991 but also for 1992-1995.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41175083 and 41275096)the Special Fund for Meteorological Scientific Research in the Public Interest (Grant Nos. GYHY201006020,GYHY201106016,and GYHY201106015)
文摘This study unveils the evolution of two major early signals in the North Pacific atmosphere-ocean system that heralded abnormal high-pressure blockings and cold-vortex activities across Northeast China, based on an analysis of the configurations of major modes including the polar vortex, the North Pacific Oscillation (NPO), and SST in the preceding winter and spring and atmospheric low-frequency disturbances in Northeast China. We analyzed these aspects to understand the atmosphere ocean physical coupling processes characterized by the two early signals, and here we explain the possible mechanisms through which dipole circulation anomalies affect the summer low-temperature processes in Northeast China. We further analyzed the interdecadal variation background and associated physical processes of the two early signals.
基金supported by"863" program (Grant No. 2010AA012305)"973" pro-gram (Grant Nos. 2012CB955401,2010CB950404 and 2012CB417203)+2 种基金the specialized Research Fund for the Doctoral Program of Higher Education (SRFDP)the National Natural Science Foundation of China (Grant No.41005036)the State Key Laboratory of Earth Surface Processes and Resource Ecology (Grant No. 2010ZY03)
文摘Simulations of tropical intraseasonal oscillation (TISO) in SAMIL, the Spectral Atmospheric Model from the Institute of Atmospheric Physics (IAP) State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG) coupled and uncoupled general circulation models were comprehensively evaluated in this study. Compared to the uncoupled model, the atmosphere-ocean coupled model improved the TISO simulation in the following aspects: (1) the spectral intensity for the 30-80-day peak eastward periods was more realistic; (2) the eastward propagation signals over western Pacific were stronger; and (3) the variance distribution and stronger signals of Kelvin waves and mixed Rossby gravity waves were more realistic. Better performance in the coupled run was assumed to be associated with a better mean state and a more realistic relationship between precipitation and SST. In both the coupled and uncoupled runs, the unrealistic simulation of the eastward propagation over the equatorial Indian Ocean might have been associated with the biases of the precipitation mean state over the Indian Ocean, and the unrealistic split of maximum TISO precipitation variance over the Pacific might have corresponded to the exaggeration of the double Intertropical Convergence Zone (ITCZ) structure in precipitation mean state. However, whether a better mean state leads to better TISO activity remains questionable. Notably, the northward propagation over the Indian Ocean during summer was not improved in the mean lead-lag correlation analysis, but case studies have shown some strong cases to yield remarkably realistic northward propagation in coupled runs.
基金The National Basic Research and Development Program(973 Program)of China under contract No.2009CB421506the National Natural Science Foundation of China under contract No.40975035China Meteorological Administration GRAPES Research Fund
文摘A mesoscale coupled atmosphere–ocean model has been developed based on the GRAPES(Global and Regional Assimilation and Prediction System) regional typhoon model(GRAPES_TYM) and ECOM-si(estuary, coast and ocean model(semi-implicit)). Coupling between the typhoon and ocean models was conducted by exchanging wind stress, heat, moisture fluxes, and sea surface temperatures(SSTs) using the coupler OASIS3.0. Numerical prediction experiments were run with and without coupling for the case of Typhoon Muifa in the western North Pacific. To investigate the impact of using more accurate SST information on the simulation of the track and the intensity of Typhoon Muifa, experiments were also conducted using increased SST resolution in the initial condition field of the control test. The results indicate that increasing SST resolution in the initial condition field somewhat improved the intensity forecast, and use of the coupled model improved the intensity forecast significantly, with mean absolute errors in maximum wind speed within 48 and 72 h reduced by 32% and 20%, respectively. Use of the coupled model also resulted in less pronounced over-prediction of the intensity of Typhoon Muifa by the GRAPES_TYM. Moreover, the effects of using the coupled model on the intensity varied throughout the different stages of the development of Muifa owing to changes in the oceanic mixed layer depth. The coupled model had pronounced effects during the later stage of Muifa but had no obvious effects during the earlier stage. The SSTs predicted by the coupled model decreased by about 5–6℃ at most after the typhoon passed, in agreement with satellite data. Furthermore, based on analysis on the sea surface heat flux, wet static energy of the boundary layer, atmospheric temperature, and precipitation forecasted by the coupled model and the control test, the simulation results of this coupled atmosphere–ocean model can be considered to reasonably reflect the primary mechanisms underlying the interactions between tropical cyclones and oceans.
基金Under the auspices of National Natural Science Foundation of China(No.40876010)Main Direction Program of Knowledge Innovation Programs of the Chinese Academy of Sciences(No.KZCX2-YW-Q03-08)+3 种基金R & D Special Fund for Public Welfare Industry(meteorology)(No.GYHY200806010)LASG State Key Laboratory Special FundFoundation of Shanghai Municipal Education Commission(No.E03004)Natural Science Foundation of Zhejiang Province(No.Y6090164)
文摘The thermally and wind-driven ocean circulation is a complicated natural phenomenon in the atmospheric physics. Hence we need to reduce it using basic models and solve the models using approximate methods. A non-linear model of the thermally and wind-driven ocean circulation is used in this paper. The results show that the zero solution of the linear equation is a stable focus point, which is the path curve trend origin point as time (t) trend to infinity. By using the homotopic mapping perturbation method, the exact solution of the model is obtained. The homotopic mapping perturbation method is an analytic solving method, so the obtained solution can be used for analytic operating sequentially. And then we can also obtain the diversified qualitative and quantitative behaviors for corresponding physical quantities.
基金supported by the National Key Research and Development Program of China[grant number 2016YFA0600704]the National Natural Science Foundation of China[grant number Y71301U801]
文摘The authors review recent advances in the development of coupled Regional Earth System Models (RESMs),a field that is still in its early stages.To date,coupled regional atmosphere-ocean-sea ice,atmosphere-aerosol and atmosphere-biosphere models have been developed,but they have been applied onlyto limited regional settings.Much more work is thus needed to assess their transferability to a wide range of settings.Future challenges in regional climate modeling are identified,including the development of fully coupled RESMs encompassing not only atmosphere,ocean,cryosphere,biosphere,chemosphere,but also the human component in a fully interactive way.
基金Major Research Program for Global Change and Regional Response, National Natural Science Foundation of China (40231005) Program for Knowledge Innovation Project, Chinese Academy of Science (KZ CX3-SW-218).
文摘Simulations of the interdecadal variations of summer rainfall over China are assessed from 5 coupled AOGCMs from the Data Distribution Center (DDC) of the Intergovernmental Panel in Climate Change (IPCC) under the IPCC-Special Report in Emission Scenarios (SRES) A2 and B2 scenario. We examined their ability in simulating the interdecadal variations of summer precipitation over China from 1951 to 1990. The difference before and after the mid-1960’s and the late 1970’s is given respectively to check the capability of the models, especially in reproducing the rainfall jump in North China. We also investigated the interdecadal variations simulated by the models in the 1990’s and the average of 2001-2020 in the future under the scenario A2 and B2. The analysis shows that the current AOGCMs is not good enough in simulating the interdecadal variations of summer precipitation in China. The interdecadal variations of summer rainfall simulated by most of the models cannot reproduce the observation in North China. Higher resolution models are suggested to well simulate the interdecadal variability in regional scale.
基金We want, to express our gratitude for support from the National Natural Science Foundation of China (Grant No. 40136010) and the Education Ministry of China.
文摘The role of halted "baroclinic modes" in the central equatorial Pacific is analyzed. It is found that dominant anomaly signals corresponding to "baroclinic modes" occur in the upper layer of the equatorial Pacific, in a two-and-a-half layer oceanic model, in assimilated results of a simple OGCM and in the ADCP observation of TAO. A second "baroclinic mode" is halted in the central equatorial Pacific corresponding to a positive SST anomaly while the first "baroclinic mode" propagates eastwards in the eastern equatorial Pacific. The role of the halted second "baroclinic mode" in the central equatorial Pacific is explained by a staged ocean-atmosphere interaction mechanism in the formation of El Nifio: the westerly bursts in boreal winter over the western equatorial Pacific generate the halted second "baroclinic mode" in the central equatorial Pacific, leading to the increase of heat content and temperature in the upper layer of the central Pacific which induces the shift of convection from over the western equatorial Pacific to the central equatorial Pacific; another wider, westerly anomaly burst is induced over the western region of convection above the central equatorial Pacific and the westerly anomaly burst generates the first "baroclinic mode" propagating to the eastern equatorial Pacific, resulting in a warm event in the eastern equatorial Pacific. The mechanism presented in this paper reveals that the central equatorial Pacific is a key region in detecting the possibility of ENSO and, by analyzing TAO observation data of ocean currents and temperature in the central equatorial Pacific, in predicting the coming of an El Nino several months ahead.
基金supported by the National Natural Science Foundation of China(Grant Nos.41230420,41376018&41606012)
文摘This paper reviews the historic understanding of the predictability of atmospheric and oceanic motions, and interprets it in a general framework. On this basis, the existing challenges and unsolved problems in the study of the intrinsic predictability limit(IPL) of weather and climate events of different spatio-temporal scales are summarized. Emphasis is also placed on the structure of the initial error and model parameter errors as well as the associated targeting observation issue. Finally, the predictability of atmospheric and oceanic motion in the ensemble-probabilistic methods widely used in current operational forecasts are discussed.The necessity of considering IPLs in the framework of stochastic dynamic systems is also addressed.
基金Supported by the China Meteorological Administration Special Public Welfare Research Fund for Meteorological Profession(GYHY201106004)National Natural Science Foundation of China(41005029)Doctoral Students Visiting Program of the Chinese Ministry of Education
文摘The high-resolution Weather Research and Forecasting (WRF) model is coupled to the Princeton Ocean Model (POM) to investigate the effect of air-sea interaction during Typhoon Kaemi that formed in the Northwest Pacific at 0000 UTC 19 July 2006. The coupled model can reasonably reproduce the major features of ocean response to the moving tropical cyclone (TC) forcing, including the deepening of ocean mixed layer (ML), cooling of sea surface temperature (SST), and decaying of typhoon. Due to the appearance of maximum SST cooling to the left of the simulated typhoon track, two points respectively located to the left (16.25 N, 130.1 E, named as A, the maximum SST cooling region) and right (17.79 N, 130.43 E, named as B) of the typhoon track are taken as the sampling points to study the mechanisms of SST cooling. The low temperature at point A has a good correlation with the 10-m winds but does not persist for a long time, which illustrates that the temperature dropping produced by upwelling is a quick process. Although the wind-current resonance causes oscillations to the left of typhoon track at point A, the fluctuation is not so strong as that at point B. The thin ML and upwelling produced by the Ekman pumping from strong 10-m winds are the main reason of maximum SST cooling appearing to the left of the typhoon track. Due to weaker 10-m winds and thicker and warmer ML at point B, the colder water under the thermocline is surpressed and the temperature dropping is not dramatic when the strongest 10-m winds occur. Afterwards, the temperature gradually decreases, which is found to be caused by the inertial oscillations of the wind-current system.
基金Supported by the National Natural Science Foundation of China(41575077,41490643,and 41805051)National Key Research and Development Program of China(2017YFA0604102)+1 种基金Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)Startup Found for Introduced Talents of Nanjing University of Information Science&Technology(2017r057)
文摘Using the hindcasts provided by the Ensemble-Based Predictions of Climate Changes and Their Impacts(ENSEMBLES) project for the period of 1980–2005, the forecast capability of spring climate in China is assessed mainly from the aspects of precipitation, 2-m air temperature, and atmospheric circulations. The ENSEMBELS can reproduce the climatology and dominant empirical orthogonal function(EOF) modes of precipitation and 2-m air temperature, with some differences arising from different initialization months. The multi-model ensemble(MME) forecast of interannual variability is of good performance in some regions such as eastern China with February initialization.The spatial patterns of the MME interannual and inter-member spreads for precipitation and 2-m air temperature are consistent with those of the observed interannual spread, indicating that internal dynamic processes have major impacts on the interannual anomaly of spring climate in China. We have identified two coupled modes between intermember anomalies of the 850-hPa vorticity in spring and sea surface temperature(SST) both in spring and at a lead of 2 months, of which the first mode shows a significant impact on the spring climate in China, with an anomalous anticyclone located over Northwest Pacific and positive precipitation and southwesterly anomalies in eastern China.Our results also suggest that the SST at a lead of two months may be a predictor for the spring climate in eastern China. A better representation of the ocean–atmosphere interaction over the tropical Pacific, Northwest Pacific, and Indian Ocean can improve the forecast skill of the spring climate in eastern China.
文摘The wave-CISK condensation heating and evaporation heating over high SST can lead to the positive feedback of atmosphere-ocean coupled system, and the strong unstable Kelvin wave theory can explain the development process of the 1982—1983 ENSO.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (2016R1A1A3A04005520 and 2017K2A9A1A06056874)supported by the National Science Foundation (AGS-1934392)+1 种基金The Community Earth System Model project is supported primarily by the National Science Foundation (NSF)supported by the National Center for Atmospheric Research, which is a major facility sponsored by the NSF under Cooperative Agreement (1852977)。
文摘Anthropogenic aerosols are effective radiative forcing agents that perturb the Earth’s climate. Major emission sources shifted from the western to eastern hemisphere around the 1980 s. An ensemble of single-forcing simulations with an Earth System Model reveals two stages of aerosol-induced climate change in response to the global aerosol increase for 1940–1980 and the zonal shift of aerosol forcing for 1980–2020, respectively. Here, using idealized experiments with hierarchical models, we show that the aerosol increase and shift modes of aerosol-forced climate change are dynamically distinct, governed by the inter-hemispheric energy transport and basin-wide ocean–atmosphere interactions, respectively.The aerosol increase mode dominates in the motionless slab ocean model but is damped by ocean dynamics. Free of zonal-mean energy perturbation, characterized by an anomalous North Atlantic warming and North Pacific cooling, the zonal shift mode is amplified by interactive ocean dynamics through Bjerknes feedback. Both modes contribute to a La Ni?a-like pattern over the equatorial Pacific. We suggest that a global perspective that accommodates the evolving geographical distribution of aerosol emissions is vital for understanding the aerosol-forced historical climate change.
文摘This paper investigates two methods of coupling fluids across an interface,motivated by air-sea interaction in application codes.One method is for sequential configurations,where the air code module in invoked over some time interval prior to the sea module.The other method is for concurrent setups,in which the air and sea modules run in parallel.The focus is the temporal representation of air-sea fluxes.The methods we study conserve moments of the fluxes,with an arbitrary order of accuracy possible in time.Different step sizes are allowed for the two fluid codes.An a posteriori stability indicator is defined,which can be computed efficiently on-the-fly over each coupling interval.For a model of two coupled fluids with natural heat convection,using finite elements in space,we prove the sufficiency of our stability indicator.Under certain conditions,we also prove that stability can be enforced by iteration when the coupling interval is small enough.In particular,for solutions in a certain class,we show that the step size scaling is no worse than O(h)in three dimensions of space,where Oh is a mesh parameter.This is a sharper result than what has been shown previously for related algorithms with finite element methods.Computational examples illustrate the behavior of the algorithms under a wide variety of configurations.