This analysis of the multi-model aerosol optical depth (AOD) in eastern China using the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) datasets shows that the global models underestimate the ...This analysis of the multi-model aerosol optical depth (AOD) in eastern China using the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) datasets shows that the global models underestimate the AOD by 33% and 44% in southern and northern China, respectively, and decrease the relative humidity (RH) of the air in the surface layer to 71%–80%, which is less than the RH of 77%–92% in reanalysis meteorological datasets. This indicates that the low biases in the RH partially account for the errors in the AOD. The AOD is recalculated based on the model aerosol concentrations and the reanalysis humidity data. Improving the mean value of the RH increases the multi-model annual mean AOD by 45% in southern China and by 33% in June–August in northern China. This method of improving the AOD is successful in most of the ACCMIP models, but it is unlikely to be successful in GISS-E2-R, in which the plot of its AOD efficiency against RH strongly deviates from the rest of the models. The effect of the improvement in the modeled RH on the AOD depends on the concentration of aerosols. The shape error in the frequency distribution of the RH is likely to be more important than the error in the mean value of the RH, but this requires further research.展开更多
Experimental outputs of 11 Atmospheric Model Intercomparison Project (AMIP) models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) are analyzed to assess the atmospheric circulation anomaly over ...Experimental outputs of 11 Atmospheric Model Intercomparison Project (AMIP) models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) are analyzed to assess the atmospheric circulation anomaly over Northern Hemisphere induced by the anomalous rainfall over tropical Pacific and Indian Ocean during boreal winter.The analysis shows that the main features of the interannual variation of tropical rainfall anomalies,especially over the Central Pacific (CP) (5°S-5°N,175°E-135°W) and Indo-western Pacific (IWP) (20°S-20°N,110°-150°E) are well captured in all the CMIP5/AMIP models.For the IWP and western Indian Ocean (WIO) (10°S-10°N,45°-75°E),the anomalous rainfall is weaker in the 11 CMIP5/AMIP models than in the observation.During El Ni(n)o/La Ni(n)a mature phases in boreal winter,consistent with observations,there are geopotential height anomalies known as the Pacific North American (PNA) pattern and Indo-western Pacific and East Asia (IWPEA) pattern in the upper troposphere,and the northwestern Pacific anticyclone (cyclone) (NWPA) in the lower troposphere in the models.Comparison between the models and observations shows that the ability to simulate the PNA and NWPA pattern depends on the ability to simulate the anomalous rainfall over the CP,while the ability to simulate the IWPEA pattern is related to the ability to simulate the rainfall anomaly in the IWP and WIO,as the SST anomaly is same in AMIP experiments.It is found that the tropical rainfall anomaly is important in modeling the impact of the tropical Indo-Pacific Ocean on the extratropical atmospheric circulation anomaly.展开更多
The atmospheric angular momentum (AAM) functions in terms of contribution to polar wobble and length of day change, are calculated from the output data of GSM9603 global circulation model (GCM) of Japan Meteorological...The atmospheric angular momentum (AAM) functions in terms of contribution to polar wobble and length of day change, are calculated from the output data of GSM9603 global circulation model (GCM) of Japan Meteorological Agency (JMA), from the reanalysis data of the National Centers for the Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR), and from the operational objective analysis data of JMA, respectively. The comparison shows that during the period from 1985 to 1995, the values of the pressure terms in the equatorial components of AAM functions calculated from three data sets agree with each other better along 90°E longitude than along Greenwich meridian direction. The axial component of relative AAM function estimated from GSM 9603 agrees well with those from the other two data sets in terms of seasonal variations with the moderate amplitudes, but not so well with the composite axial component of relative AAM functions estimated from 23 GCM models anticipating in the first phase of AMIP. In addition, its interannual variation from 1979 to 1996 shows the main characteristics of ENSO evolution, just as does the axial component of relative AAM function estimated from NCEP reanalysis data except for the period of anomalous ENSO from 1991 to 1993.展开更多
The development of coupled earth/climate system models in China over the past 20 years is reviewed, including a comparison with other international models that participated in the Coupled Model Intercom- parison Proje...The development of coupled earth/climate system models in China over the past 20 years is reviewed, including a comparison with other international models that participated in the Coupled Model Intercom- parison Project (CMIP) from phase 1 (CMIP1) to phase 4 (CMIP4). The Chinese contribution to CMIP is summarized, and the major achievements from CMIP1 to CMIP3 are listed as a reference for assessing the strengths and weaknesses of Chinese models. After a description of CMIP5 experiments, the five Chinese models that participated in CMIP5 are then introduced. Furthermore, following a review of the current status of international model development, both the challenges and opportunities for the Chinese climate modeling community are discussed. The development of high-resolution climate models, earth system mod- els, and improvements in atmospheric and oceanic general circulation models, which are core components of earth/climate system models, are highlighted. To guarantee the sustainable development of climate system models in China, the need for national-level coordination is discussed, along with a list of the main compo- nents and supporting elements identified by the US National Strategy for Advancing Climate Modeling.展开更多
气候变化引起的地面气溶胶浓度变化与区域空气质量密切相关。本文利用"国际大气化学—气候模式比较计划"(Atmospheric Chemistry and Climate Model Intercomparison Project,ACCMIP)中4个模式的试验数据分析了RCP8.5情景下20...气候变化引起的地面气溶胶浓度变化与区域空气质量密切相关。本文利用"国际大气化学—气候模式比较计划"(Atmospheric Chemistry and Climate Model Intercomparison Project,ACCMIP)中4个模式的试验数据分析了RCP8.5情景下2000~2100年气候变化对中国气溶胶浓度的影响。结果显示,在人为气溶胶排放固定在2000年、仅考虑气候变化的影响时,2000~2100年气候变化导致中国北部地区(31°N^45°N,105°E^122°E)硫酸盐、有机碳和黑碳气溶胶分别增加28%、21%和9%,硝酸盐气溶胶在中国东部地区减少30%。气候变化对细颗粒物(PM_(2.5))浓度的影响有显著的季节变化特征,冬季PM_(2.5)浓度在中国东部减少15%,这主要是由硝酸盐气溶胶在冬季的显著减少造成的;夏季PM_(2.5)浓度在中国北部地区增加16%,而长江以南地区减少为9%,这可能与模式模拟的未来东亚夏季风环流的增强有关。展开更多
目前气候模式对沙尘气溶胶直接辐射强迫模拟仍有很大不确定性,多模式对比有助于定量评估不确定范围。国际大气化学—气候模式比较计划(Atmospheric Chemistry and Climate Model Intercomparison Project,ACCMIP)旨在评估当前模式对短...目前气候模式对沙尘气溶胶直接辐射强迫模拟仍有很大不确定性,多模式对比有助于定量评估不确定范围。国际大气化学—气候模式比较计划(Atmospheric Chemistry and Climate Model Intercomparison Project,ACCMIP)旨在评估当前模式对短寿命大气成分辐射强迫和气候效应的模拟能力。基于7个ACCMIP模式模拟的中国地区沙尘气溶胶浓度,我们评估了中国区域沙尘气溶胶直接辐射强迫和不确定性范围。结果显示,中国区域沙尘气溶胶年排放总量为215±163 Tg a^(-1),区域年均地表浓度为41±27μg m^(-3),柱浓度为9±4 kg m^(-2),光学厚度为0.09±0.05。中国区域年均沙尘气溶胶产生的大气顶短波、长波和总辐射强迫分别为-1.3±0.8 W m^(-2)、0.7±0.4W m^(-2)和-0.5±0.7 W m-2;地表短波、长波和总的辐射强迫值为-1.5±1.0 W m^(-2)、1.8±0.9 W m^(-2)和0.2±0.2 W m^(-2)。沙尘气溶胶长波辐射强迫对沙尘浓度的垂直分布敏感。高层沙尘气溶胶浓度越大,其在大气顶产生更强的正值长波辐射强迫。然而,沙尘气溶胶短波辐射强迫主要受整层沙尘柱浓度控制,对沙尘浓度的垂直分布较不敏感。本文结果可为中国沙尘气溶胶的气候模拟提供参考。展开更多
利用第五次耦合模式比较计划(Phase 5 of Coupled Model Intercomparison Project,CMIP5)提供的30个全球气候模式模拟的1961~2005年的夏季逐月环流场资料及同期NCEP再分析资料,引入泰勒图及各种评估指标,探讨全球气候模式对东亚夏季...利用第五次耦合模式比较计划(Phase 5 of Coupled Model Intercomparison Project,CMIP5)提供的30个全球气候模式模拟的1961~2005年的夏季逐月环流场资料及同期NCEP再分析资料,引入泰勒图及各种评估指标,探讨全球气候模式对东亚夏季平均大气环流场的模拟能力,寻求具有较好东亚夏季环流场模拟能力的气候模式。结果表明:1)全球气候模式能够模拟出东亚夏季平均大气环流的基本特征,CMIP5模式的总体模拟能力较第三次耦合模式比较计划(CMIP3)有较大程度的提高,如CMIP5模式对东亚大部分地区夏季海平面气压(Sea Level Pressure,SLP)场的模拟偏差在6 h Pa以内。2)模式对不同层次环流场的模拟能力存在差异,500 h Pa高度场的模拟能力最强,其次为100 h Pa高度场、850 h Pa风场,SLP场最弱;对东亚夏季主要环流系统的模拟对比发现,模式对印度热低压及东伸槽强度指数的模拟能力最好。3)综合CMIP5模式对东亚夏季各层次平均环流场以及主要环流系统的模拟能力,发现模拟较好的5个模式为CESM1-CAM5、MPI-ESM-MR、MPI-ESM-LR、MPI-ESM-P和Can ESM2。4)相对于单一模式,多模式集合平均(MME)模拟能力较强,但较优选的前5个模式集合平均的模拟能力弱。展开更多
E1 Nifio-Southem Oscillation (ENSO) events significantly affect the year-by-year variations of the East Asian winter monsoon (EAWM). However, the effect of La Nifia events on the EAWM is not a mirror image of that...E1 Nifio-Southem Oscillation (ENSO) events significantly affect the year-by-year variations of the East Asian winter monsoon (EAWM). However, the effect of La Nifia events on the EAWM is not a mirror image of that of E1 Nifio events. Although the EAWM becomes generally weaker during El Nifio events and stronger during La Nifia winters, the enhanced precipitation over the southeastern China and warmer surface air temperature along the East Asian coastline during E1 Nifio years are more significant. These asymmetric effects are caused by the asymmetric longitudinal positions of the western North Pacific (WNP) anticyclone during El Nifio events and the WNP cyclone during La Nifia events; specifically, the center of the WNP cyclone during La Nifia events is westward-shifted relat- ive to its El Nifio counterpart. This central-position shift results from the longitudinal shift of remote E1 Nifio and La Nifia anomalous heating, and asymmetry in the amplitude of local sea surface temperature anomalies over the WNP. However, such asymmetric effects of ENSO on the EAWM are barely reproduced by the atmospheric models of Phase 5 of the Coupled Model Intercomparison Project (CMIP5), although the spatial patterns of anomalous circula- tions are reasonably reproduced. The major limitation of the CMIP5 models is an overestimation of the anomalous WNP anticyclone/cyclone, which leads to stronger EAWM rainfall responses. The overestimated latent heat flux an- omalies near the South China Sea and the northern WNP might be a key factor behind the overestimated anomalous circulations.展开更多
The Chinese Academy of Meteorological Sciences(CAMS)has been devoted to developing a climate system model(CSM)to meet demand for climate simulation and prediction for the East Asian region.In this study,we evaluated t...The Chinese Academy of Meteorological Sciences(CAMS)has been devoted to developing a climate system model(CSM)to meet demand for climate simulation and prediction for the East Asian region.In this study,we evaluated the performance of CAMS-CSM in regard to sensible heat flux(H),latent heat flux(LE),surface temperature,soil moisture,and snow depth,focusing on the Atmospheric Model Intercomparison Project experiment,with the aim of participating in the Coupled Model Intercomparison Project phase 6.We systematically assessed the simulation results achieved by CAMS-CSM for these variables against various reference products and ground observations,including the FLUXNET model tree ensembles H and LE data,Climate Prediction Center soil moisture data,snow depth climatology data,and Chinese ground observations of snow depth and winter surface temperature.We compared these results with data from the ECMWF Interim reanalysis(ERA-Interim)and Global Land Data Assimilation System(GLDAS).Our results indicated that CAMS-CSM simulations were better than or comparable to ERA-Interim reanalysis for snow depth and winter surface temperature at regional scales,but slightly worse when simulating total column soil moisture.The root-mean-square differences of H in CAMS-CSM were all greater than those from the ERA-Interim reanalysis,but less than or comparable to those from GLDAS.The spatial correlations for H in CAMS-CSM were the lowest in nearly all regions,except for North America.CAMS-CSM LE produced the lowest bias in Siberia,North America,and South America,but with the lowest spatial correlation coefficients.Therefore,there are still scopes for improving H and LE simulations in CAMS-CSM,particularly for LE.展开更多
基金jointly supported by the National Key Research and Development Program of China [grant number2016YFE0201400]the Basic Research Program of the State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry,Institute of Atmospheric Physics,Chinese Academy of Sciences [grant number 7-082999]
文摘This analysis of the multi-model aerosol optical depth (AOD) in eastern China using the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) datasets shows that the global models underestimate the AOD by 33% and 44% in southern and northern China, respectively, and decrease the relative humidity (RH) of the air in the surface layer to 71%–80%, which is less than the RH of 77%–92% in reanalysis meteorological datasets. This indicates that the low biases in the RH partially account for the errors in the AOD. The AOD is recalculated based on the model aerosol concentrations and the reanalysis humidity data. Improving the mean value of the RH increases the multi-model annual mean AOD by 45% in southern China and by 33% in June–August in northern China. This method of improving the AOD is successful in most of the ACCMIP models, but it is unlikely to be successful in GISS-E2-R, in which the plot of its AOD efficiency against RH strongly deviates from the rest of the models. The effect of the improvement in the modeled RH on the AOD depends on the concentration of aerosols. The shape error in the frequency distribution of the RH is likely to be more important than the error in the mean value of the RH, but this requires further research.
基金supported by the Ministry of Science and Technology of China (National Basic Research Program of China Grant No. 2012CB955602)the National Natural Science Foundation of China (Grant Nos. 41176006 and 41221063)
文摘Experimental outputs of 11 Atmospheric Model Intercomparison Project (AMIP) models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) are analyzed to assess the atmospheric circulation anomaly over Northern Hemisphere induced by the anomalous rainfall over tropical Pacific and Indian Ocean during boreal winter.The analysis shows that the main features of the interannual variation of tropical rainfall anomalies,especially over the Central Pacific (CP) (5°S-5°N,175°E-135°W) and Indo-western Pacific (IWP) (20°S-20°N,110°-150°E) are well captured in all the CMIP5/AMIP models.For the IWP and western Indian Ocean (WIO) (10°S-10°N,45°-75°E),the anomalous rainfall is weaker in the 11 CMIP5/AMIP models than in the observation.During El Ni(n)o/La Ni(n)a mature phases in boreal winter,consistent with observations,there are geopotential height anomalies known as the Pacific North American (PNA) pattern and Indo-western Pacific and East Asia (IWPEA) pattern in the upper troposphere,and the northwestern Pacific anticyclone (cyclone) (NWPA) in the lower troposphere in the models.Comparison between the models and observations shows that the ability to simulate the PNA and NWPA pattern depends on the ability to simulate the anomalous rainfall over the CP,while the ability to simulate the IWPEA pattern is related to the ability to simulate the rainfall anomaly in the IWP and WIO,as the SST anomaly is same in AMIP experiments.It is found that the tropical rainfall anomaly is important in modeling the impact of the tropical Indo-Pacific Ocean on the extratropical atmospheric circulation anomaly.
基金the National Natural Science Foundation of China under Grant Nos. 49904002 and 40074004, the National Climbing Project of China
文摘The atmospheric angular momentum (AAM) functions in terms of contribution to polar wobble and length of day change, are calculated from the output data of GSM9603 global circulation model (GCM) of Japan Meteorological Agency (JMA), from the reanalysis data of the National Centers for the Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR), and from the operational objective analysis data of JMA, respectively. The comparison shows that during the period from 1985 to 1995, the values of the pressure terms in the equatorial components of AAM functions calculated from three data sets agree with each other better along 90°E longitude than along Greenwich meridian direction. The axial component of relative AAM function estimated from GSM 9603 agrees well with those from the other two data sets in terms of seasonal variations with the moderate amplitudes, but not so well with the composite axial component of relative AAM functions estimated from 23 GCM models anticipating in the first phase of AMIP. In addition, its interannual variation from 1979 to 1996 shows the main characteristics of ENSO evolution, just as does the axial component of relative AAM function estimated from NCEP reanalysis data except for the period of anomalous ENSO from 1991 to 1993.
基金Supported by the National Natural Science Foundation of China(41125017 and 41330423)LASG/IAP Funding for the Development of Climate System Model
文摘The development of coupled earth/climate system models in China over the past 20 years is reviewed, including a comparison with other international models that participated in the Coupled Model Intercom- parison Project (CMIP) from phase 1 (CMIP1) to phase 4 (CMIP4). The Chinese contribution to CMIP is summarized, and the major achievements from CMIP1 to CMIP3 are listed as a reference for assessing the strengths and weaknesses of Chinese models. After a description of CMIP5 experiments, the five Chinese models that participated in CMIP5 are then introduced. Furthermore, following a review of the current status of international model development, both the challenges and opportunities for the Chinese climate modeling community are discussed. The development of high-resolution climate models, earth system mod- els, and improvements in atmospheric and oceanic general circulation models, which are core components of earth/climate system models, are highlighted. To guarantee the sustainable development of climate system models in China, the need for national-level coordination is discussed, along with a list of the main compo- nents and supporting elements identified by the US National Strategy for Advancing Climate Modeling.
文摘气候变化引起的地面气溶胶浓度变化与区域空气质量密切相关。本文利用"国际大气化学—气候模式比较计划"(Atmospheric Chemistry and Climate Model Intercomparison Project,ACCMIP)中4个模式的试验数据分析了RCP8.5情景下2000~2100年气候变化对中国气溶胶浓度的影响。结果显示,在人为气溶胶排放固定在2000年、仅考虑气候变化的影响时,2000~2100年气候变化导致中国北部地区(31°N^45°N,105°E^122°E)硫酸盐、有机碳和黑碳气溶胶分别增加28%、21%和9%,硝酸盐气溶胶在中国东部地区减少30%。气候变化对细颗粒物(PM_(2.5))浓度的影响有显著的季节变化特征,冬季PM_(2.5)浓度在中国东部减少15%,这主要是由硝酸盐气溶胶在冬季的显著减少造成的;夏季PM_(2.5)浓度在中国北部地区增加16%,而长江以南地区减少为9%,这可能与模式模拟的未来东亚夏季风环流的增强有关。
文摘目前气候模式对沙尘气溶胶直接辐射强迫模拟仍有很大不确定性,多模式对比有助于定量评估不确定范围。国际大气化学—气候模式比较计划(Atmospheric Chemistry and Climate Model Intercomparison Project,ACCMIP)旨在评估当前模式对短寿命大气成分辐射强迫和气候效应的模拟能力。基于7个ACCMIP模式模拟的中国地区沙尘气溶胶浓度,我们评估了中国区域沙尘气溶胶直接辐射强迫和不确定性范围。结果显示,中国区域沙尘气溶胶年排放总量为215±163 Tg a^(-1),区域年均地表浓度为41±27μg m^(-3),柱浓度为9±4 kg m^(-2),光学厚度为0.09±0.05。中国区域年均沙尘气溶胶产生的大气顶短波、长波和总辐射强迫分别为-1.3±0.8 W m^(-2)、0.7±0.4W m^(-2)和-0.5±0.7 W m-2;地表短波、长波和总的辐射强迫值为-1.5±1.0 W m^(-2)、1.8±0.9 W m^(-2)和0.2±0.2 W m^(-2)。沙尘气溶胶长波辐射强迫对沙尘浓度的垂直分布敏感。高层沙尘气溶胶浓度越大,其在大气顶产生更强的正值长波辐射强迫。然而,沙尘气溶胶短波辐射强迫主要受整层沙尘柱浓度控制,对沙尘浓度的垂直分布较不敏感。本文结果可为中国沙尘气溶胶的气候模拟提供参考。
文摘利用第五次耦合模式比较计划(Phase 5 of Coupled Model Intercomparison Project,CMIP5)提供的30个全球气候模式模拟的1961~2005年的夏季逐月环流场资料及同期NCEP再分析资料,引入泰勒图及各种评估指标,探讨全球气候模式对东亚夏季平均大气环流场的模拟能力,寻求具有较好东亚夏季环流场模拟能力的气候模式。结果表明:1)全球气候模式能够模拟出东亚夏季平均大气环流的基本特征,CMIP5模式的总体模拟能力较第三次耦合模式比较计划(CMIP3)有较大程度的提高,如CMIP5模式对东亚大部分地区夏季海平面气压(Sea Level Pressure,SLP)场的模拟偏差在6 h Pa以内。2)模式对不同层次环流场的模拟能力存在差异,500 h Pa高度场的模拟能力最强,其次为100 h Pa高度场、850 h Pa风场,SLP场最弱;对东亚夏季主要环流系统的模拟对比发现,模式对印度热低压及东伸槽强度指数的模拟能力最好。3)综合CMIP5模式对东亚夏季各层次平均环流场以及主要环流系统的模拟能力,发现模拟较好的5个模式为CESM1-CAM5、MPI-ESM-MR、MPI-ESM-LR、MPI-ESM-P和Can ESM2。4)相对于单一模式,多模式集合平均(MME)模拟能力较强,但较优选的前5个模式集合平均的模拟能力弱。
基金Supported by the National Natural Science Foundation of China(41405103 and 41125017)China Meteorological Administration Special Public Welfare Research Fund(GYHY201506012)Joint Center for Global Change Studies(105019)
文摘E1 Nifio-Southem Oscillation (ENSO) events significantly affect the year-by-year variations of the East Asian winter monsoon (EAWM). However, the effect of La Nifia events on the EAWM is not a mirror image of that of E1 Nifio events. Although the EAWM becomes generally weaker during El Nifio events and stronger during La Nifia winters, the enhanced precipitation over the southeastern China and warmer surface air temperature along the East Asian coastline during E1 Nifio years are more significant. These asymmetric effects are caused by the asymmetric longitudinal positions of the western North Pacific (WNP) anticyclone during El Nifio events and the WNP cyclone during La Nifia events; specifically, the center of the WNP cyclone during La Nifia events is westward-shifted relat- ive to its El Nifio counterpart. This central-position shift results from the longitudinal shift of remote E1 Nifio and La Nifia anomalous heating, and asymmetry in the amplitude of local sea surface temperature anomalies over the WNP. However, such asymmetric effects of ENSO on the EAWM are barely reproduced by the atmospheric models of Phase 5 of the Coupled Model Intercomparison Project (CMIP5), although the spatial patterns of anomalous circula- tions are reasonably reproduced. The major limitation of the CMIP5 models is an overestimation of the anomalous WNP anticyclone/cyclone, which leads to stronger EAWM rainfall responses. The overestimated latent heat flux an- omalies near the South China Sea and the northern WNP might be a key factor behind the overestimated anomalous circulations.
基金Supported by the National Natural Science Foundation for Young Scientists of China(41505010 and 41605073)Basic Research Special Project of Chinese Academy of Meteorological Sciences(2017Y015 and 2017Y008)
文摘The Chinese Academy of Meteorological Sciences(CAMS)has been devoted to developing a climate system model(CSM)to meet demand for climate simulation and prediction for the East Asian region.In this study,we evaluated the performance of CAMS-CSM in regard to sensible heat flux(H),latent heat flux(LE),surface temperature,soil moisture,and snow depth,focusing on the Atmospheric Model Intercomparison Project experiment,with the aim of participating in the Coupled Model Intercomparison Project phase 6.We systematically assessed the simulation results achieved by CAMS-CSM for these variables against various reference products and ground observations,including the FLUXNET model tree ensembles H and LE data,Climate Prediction Center soil moisture data,snow depth climatology data,and Chinese ground observations of snow depth and winter surface temperature.We compared these results with data from the ECMWF Interim reanalysis(ERA-Interim)and Global Land Data Assimilation System(GLDAS).Our results indicated that CAMS-CSM simulations were better than or comparable to ERA-Interim reanalysis for snow depth and winter surface temperature at regional scales,but slightly worse when simulating total column soil moisture.The root-mean-square differences of H in CAMS-CSM were all greater than those from the ERA-Interim reanalysis,but less than or comparable to those from GLDAS.The spatial correlations for H in CAMS-CSM were the lowest in nearly all regions,except for North America.CAMS-CSM LE produced the lowest bias in Siberia,North America,and South America,but with the lowest spatial correlation coefficients.Therefore,there are still scopes for improving H and LE simulations in CAMS-CSM,particularly for LE.