NCEP/NCAR reanalysis data and a 30-year precipitation dataset of observed daily rainfall from 109 gauge stations are utilized in this paper.Using the REOF we analyzed the spatial distribution of precipitation in the 1...NCEP/NCAR reanalysis data and a 30-year precipitation dataset of observed daily rainfall from 109 gauge stations are utilized in this paper.Using the REOF we analyzed the spatial distribution of precipitation in the 109 stations in the Yangtze River Basin in Meiyu periods from 1978 to 2007.The result showed that the spatial distribution of precipitation in the Yangtze River Basin can be divided into the south and north part.As a result,relationships between an atmospheric heating source(hereafter called <Q_1>) over the Asian region and the precipitation on the south and north side of Yangtze River in Meiyu periods were separately studied in this paper.The results are shown as follows.The flood/drought to the north of Yangtze River(NYR) was mainly related to the <Q_1> over the East Asia summer monsoon region:when the <Q_1> over the Philippines through Western Pacific and the south China was weakened(strengthened),it would probably result in the flood(drought) in NYR;and the precipitation on the south side of Yangtze River(SYR)was related to the <Q_1> over the east Asia and Indian summer monsoon region:when the <Q_1> over the areas from south China to the northern East China Sea and Yellow Sea and south-eastern Japan was strengthened(weakened),and the <Q_1> over the areas from the Bay of Bengal to south-eastern Tibetan Plateau was weakened(strengthened),it will lead to flood(drought) in SYR.展开更多
The spring atmospheric heat source(AHS)over the Tibetan Plateau(TP)has been suggested to affect the Asian summer monsoon and summer precipitation over South China.However,its influence on the summer precipitation in N...The spring atmospheric heat source(AHS)over the Tibetan Plateau(TP)has been suggested to affect the Asian summer monsoon and summer precipitation over South China.However,its influence on the summer precipitation in Northeast China(NEC)remains unknown.The connection between spring TP AHS and subsequent summer precipitation over NEC from 1961 to 2020 is analyzed in this study.Results illustrate that stronger spring TP AHS can enhance subsequent summer NEC precipitation,and higher soil moisture in the Yellow River Valley-North China region(YRVNC)acts as a bridge.During spring,the strong TP AHS could strengthen the transportation of water vapor to East China and lead to excessive rainfall in the YRVNC.Thus,soil moisture increases,which regulates local thermal conditions by decreasing local surface skin temperature and sensible heat.Owing to the memory of soil moisture,the lower spring sensible heat over the YRVNC can last until mid-summer,decrease the land–sea thermal contrast,and weaken the southerly winds over the East Asia–western Pacific region and convective activities over the South China Sea and tropical western Pacific.This modulates the East Asia–Pacific teleconnection pattern,which leads to a cyclonic anomaly and excessive summer precipitation over NEC.展开更多
As a huge,intense,and elevated atmospheric heat source(AHS) approaching the mid-troposphere in spring and summer,the Tibetan Plateau(TP) thermal forcing is perceived as an important factor contributing to the formatio...As a huge,intense,and elevated atmospheric heat source(AHS) approaching the mid-troposphere in spring and summer,the Tibetan Plateau(TP) thermal forcing is perceived as an important factor contributing to the formation and variation of the Asian summer monsoon.Despite numerous studies devoted to determine the strength and change of the thermal forcing of the TP on the basis of various data sources and methods,uncertainties remain in quantitative estimation of the AHS and will persist for the following reasons:(1) Routine meteorological stations cover only limited regions and show remarkable spatial inhomogeneity with most distributed in the central and eastern plateau.Moreover,all of these stations are situated at an altitude below 5000 m.Thus,the large area above that elevation is not included in the data.(2) Direct observations on heat fluxes do not exist at most stations,and the sensible heat flux(SHF) is calculated by the bulk formula,in which the drag coefficient for heat is often treated as an empirical constant without considering atmospheric stability and thermal roughness length.(3) Radiation flux derived by satellite remote sensing shows a large discrepancy in the algorithm in data inversion and complex terrain.(4) In reanalysis data,besides the rare observational records employed for data assimilation,model bias in physical processes induces visible errors in producing the diabatic heating fields.展开更多
NCEP/NCAR reanalysis data and a 47-year precipitation dataset are utilized to analyze the relationship between an atmospheric heat source (hereafter called 〈 Q1 〉) over the Qinghai-Xizang Plateau (QXP) and its s...NCEP/NCAR reanalysis data and a 47-year precipitation dataset are utilized to analyze the relationship between an atmospheric heat source (hereafter called 〈 Q1 〉) over the Qinghai-Xizang Plateau (QXP) and its surrounding area and precipitation in northwest China. Our main conclusions are as follows: (1) The horizontal distribution of 〈 Q1 〉 and its changing trend are dramatic over QXP in the summer. There are three strong centers of 〈 Q1 〉 over the south side of QXP with obvious differences in the amount of yearly precipitation and the number of heat sinks predominate in the arid and semi-arid regions of northwest China (NWC), beside the northern QXP with an obvious higher intensity in years with less precipitation. (2) In the summer, the variation of the heat source's vertical structure is obviously different between greater and lesser precipitation years in eastern northwest China (ENWC). The narrow heat sink belt forms between the northeast QXP and the southwestern part of Lake Baikal. In July and August of greater precipitation years, the heating center of the eastern QXP stays nearly over 35°N, and at 400 hPa of the eastern QXP, the strong upward motion of the heating center constructs a closed secondary vertical circulation cell over the northeast QXP (40~ 46~N), which is propitious to add precipitation over the ENWC. Otherwise, the heating center shifts to the south of 30°N and disappears in July and August of lesser precipitation years, an opposite secondary circulation cell forms over the northeast QXP, which is a disadvantage for precipitation. Meanwhile, the secondary circulation cell in years with more or less precipitation over the ENWC is also related to the heat source over the Lake Baikal. (3) The vertical structure of the heat source over the western QXP has obvious differences between greater and lesser precipitation years in western northwest China in June and July. The strong/weak heat source over the western QXP produces relatively strong/weak ascending motion and correspondingly constructs a secondary circulation cell in lesser/greater precipitation years.展开更多
This study demonstrates the two different Rossby wave train(RWT) patterns related to the developing/decaying upper atmospheric heat source over the Tibetan Plateau(TPUHS) in boreal summer. The results show that th...This study demonstrates the two different Rossby wave train(RWT) patterns related to the developing/decaying upper atmospheric heat source over the Tibetan Plateau(TPUHS) in boreal summer. The results show that the summer TPUHS is dominated by quasi-biweekly variability, particularly from late July to mid-August when the subtropical jet steadily stays to the north of the TP. During the developing period of TPUHS events, the intensifying TPUHS corresponds to an anomalous upper-tropospheric high over the TP, which acts as the main source of a RWT that extends northeastward, via North China, the central Pacific and Alaska, to the northeastern Pacific region. This RWT breaks up while the anomalous high is temporarily replaced by an anomalous low due to the further deepened convective heating around the TPUHS peak. However, this anomalous low, though existing for only three to four days due to the counteracting dynamical effects of the persisting upper/lower divergence/convergence over the TP, acts as a new wave source to connect to an anomalous dynamical high over the Baikal region. Whilst the anomalous low is diminishing rapidly, this Baikal high becomes the main source of a new RWT, which develops eastward over the North Pacific region till around eight days after the TPUHS peak. Nevertheless, the anomaly centers along this decaying-TPUHS-related RWT mostly appear much weaker than those along the previous RWT.Therefore, their impacts on circulation and weather differ considerably from the developing to the decaying period of TPUHS events.展开更多
To cherish the memory of the late Professor Duzheng YE on what would have been his 100 th birthday, and to celebrate his great accomplishment in opening a new era of Tibetan Plateau(TP) meteorology, this review pape...To cherish the memory of the late Professor Duzheng YE on what would have been his 100 th birthday, and to celebrate his great accomplishment in opening a new era of Tibetan Plateau(TP) meteorology, this review paper provides an assessment of the atmospheric heat source(AHS) over the TP from different data resources, including observations from local meteorological stations, satellite remote sensing data, and various reanalysis datasets. The uncertainty and applicability of these heat source data are evaluated. Analysis regarding the formation of the AHS over the TP demonstrates that it is not only the cause of the atmospheric circulation, but is also a result of that circulation. Based on numerical experiments, the review further demonstrates that land–sea thermal contrast is only one part of the monsoon story. The thermal forcing of the Tibetan–Iranian Plateau plays a significant role in generating the Asian summer monsoon(ASM), i.e., in addition to pumping water vapor from sea to land and from the lower to the upper troposphere, it also generates a subtropical monsoon–type meridional circulation subject to the angular momentum conservation, providing an ascending-air large-scale background for the development of the ASM.展开更多
There has been a lot of discussion about the atmospheric heat source over the Tibetan Plateau(TP)and the low-frequency oscillation of atmospheric circulation.However,the research on low-frequency oscillation of heat s...There has been a lot of discussion about the atmospheric heat source over the Tibetan Plateau(TP)and the low-frequency oscillation of atmospheric circulation.However,the research on low-frequency oscillation of heat source over TP and its impact on atmospheric circulation are not fully carried out.By using the vertically integrated apparent heat source which is calculated by the derivation method,main oscillation periods and propagation features of the summer apparent heat source over the eastern TP(Q1ETP)are diagnosed and analyzed from 1981 to 2000.The results are as follows:(1)Summer Q1ETP has two significant oscillation periods:one is 10-20d(BWO,Quasi-Biweekly Oscillation)and the other is 30-60d(LFO,Low-frequency Oscillation).(2)A significant correlation is found between Q1ETP and rainfall over the eastern TP in 1985 and 1992,showing that the low-frequency oscillation of heat source is likely to be stimulated by oscillation of latent heat.(3)The oscillation of heat source on the plateau mainly generates locally but sometimes originates from elsewhere.The BWO of Q1ETP mainly exhibits stationary wave,sometimes moves out(mainly eastward),and has a close relationship with the BWO from the Bay of Bengal.Showing the same characteristics as BWO,the LFO mainly shows local oscillation,occasionally propagates(mainly westward),and connects with the LFO from East China.In summary,more attention should be paid to the study on BWO of Q1ETP.展开更多
Based on the NCEP/NCAR reanalysis data and the observed precipitation data in the south of China from 1958 to 2000,the impact of 30 to 60 day oscillation of atmospheric heat sources on the drought and flood events in ...Based on the NCEP/NCAR reanalysis data and the observed precipitation data in the south of China from 1958 to 2000,the impact of 30 to 60 day oscillation of atmospheric heat sources on the drought and flood events in June in the south of China is discussed.During the flood(drought) events,there exists an anomalous low-frequency anticyclone(cyclone) at the low level of the troposphere over the South China Sea and the northwestern Pacific,accompanied with anomalous low-frequency heat sinks(heat sources),while there exists an anomalous low-frequency cyclone(anticyclone) with anomalous heat sources(sinks) over the area from the south of China to the south of Japan.On average,the phase evolution of the low-frequency in drought events is 7 to 11 days ahead of that in flood events in May to June in the south of China.In flood events,low-frequency heat sources and cyclones are propagated northward from the southern South China Sea,northwestward from the warm pool of the western Pacific and westward from the northwestern Pacific around 140°E,which have very important impact on the abundant rainfall in June in the south of China.However,in drought events,the northward propagations of the low-frequency heat sources and cyclones from the South China Sea and its vicinity are rather late compared with those in flood events,and there is no obvious westward propagation of the heat sources from the northwestern Pacific.The timing of the low-frequency heat source propagation has remarkable impact on the June rainfall in the south of China.展开更多
Investigating the temporal and spatial distributions of the atmospheric heat sources(AHS)over the Tibetan Plateau-Tropical Indian Ocean(TP-TIO)region is of great importance for the understanding of the evolution and d...Investigating the temporal and spatial distributions of the atmospheric heat sources(AHS)over the Tibetan Plateau-Tropical Indian Ocean(TP-TIO)region is of great importance for the understanding of the evolution and development of the South Asian summer monsoon(SASM).This study used the Japanese 55-year Reanalysis(JRA-55)data from 1979 to 2016 and adopted statistical methods to study the characteristics of the AHS between the TP and TIO,and theirs link to the SASM on an interannual scale.The results indicated that the monthly variations of the AHS in the two regions were basically anti-phase,and that the summer AHS in the TP was obviously stronger than that in the TIO.There were strong AHS and atmospheric moisture sink(AMS)centers in both the eastern and western TP in summer.The AHS center in the east was stronger than that in the west,and the AMS centers showed the opposite pattern.In the TIO,a strong AHS center in the northwest-southeast direction was located near 10°S,90°E.Trend analysis showed that summer AHS in the TIO was increasing significantly,especially before 1998,whereas there was a weakening trend in the TP.The difference of the summer AHS between the TP and TIO(hereafter IQ)was used to measure the thermal contrast between the TP and the TIO.The IQ showed an obvious decreasing trend.After 1998,there was a weak thermal contrast between the TP and the TIO,which mainly resulted from the enhanced AHS in the TIO.The land-sea thermal contrast,the TIO Hadley circulation in the southern hemisphere and the SASM circulation all weakened,resulting in abnormal circulation and abnormal precipitation in the Bay of Bengal(BOB).展开更多
With the ERA40 reanalysis daily data for 1958-2001, the global atmospheric seasonal-mean diabatic heating and transient heating are computed by using the residual diagnosis of the thermodynamic equation. The three-dim...With the ERA40 reanalysis daily data for 1958-2001, the global atmospheric seasonal-mean diabatic heating and transient heating are computed by using the residual diagnosis of the thermodynamic equation. The three-dimensional structures for the two types of heating are described and compared. It is demonstrated that the diabatic heating is basically characterized by strong and deep convective heating in the tropics, shallow heating in the midlatitudes and deep cooling in the subtropics and high-latitudes. The tropical diabatic heating always shifts towards the summer hemisphere, but the midlatitude heating and high-latitude cooling tend to be strong in the winter hemisphere. On the other hand, the transient heating due to transient eddy transfer is characterized by a meridional dipole pattern with cooling in the subtropics and heating in the mid- and high-latitudes, as well as by a vertical dipole pattern in the midlatitudes with cooling at lower levels and heating in the mid- and higher-levels, which gives rise to a sloped structure in the transient heating oriented from the lower levels in the high latitudes and higher levels in the midlatitudes. The transient heating is closely related to a storm track along which the transient eddy activity is much stronger in the winter hemisphere than in the summer hemisphere. In Northern Hemisphere, the transient heating locates in the western oceanic basin, while it is zonally-oriented in Southern Hemisphere, for which the transient heating and cooling are far separated over South Pacific during the cold season. The transient heating tends to cancel the diabatic heating over most of the globe. However, it dominates the mid-tropospheric heating in the midlatitudes. Therefore, the atmospheric transient processes act to help the atmosphere gain more heat in the high-latitudes and in the mid-troposphere of midlatitudes, reallocating the atmospheric heat obtained from the diabatic heating.展开更多
Based on the fifth-generation reanalysis dataset from the European Centre for Medium-Range Weather Forecasts for 1979–2019,we investigated the effects of the circumglobal teleconnection(CGT)on the interdecadal variat...Based on the fifth-generation reanalysis dataset from the European Centre for Medium-Range Weather Forecasts for 1979–2019,we investigated the effects of the circumglobal teleconnection(CGT)on the interdecadal variation of the March atmospheric heat source(AHS)over the Southeast Asian low-latitude highlands(SEALLH).The dominant mode of the March AHS over the SEALLH features a monopole structure with an 8–11-year period.Decadal variations in the AHS make an important contribution to the 11-year low-pass filtered component of the AHS index,whichexplains 54.3%of the total variance.The CGT shows a clear interdecadal variation,which explains 59.3%of the total variance.The March AHS over the SEALLH is significantly related to the CGT on interdecadal timescales.When the CGT is optimally excited by a significant cyclonic vorticity source near northern Africa(i.e.,in its positive phase),the SEALLH is dominated by anomalous southerly winds and ascending motions on the east of the anomalous cyclone.The enhanced advection and upward transfer result in a high-enthalpy air mass that converges into and condenses over the SEALLH,leading to a largerthan-average March AHS over this region.The key physical processes revealed by this diagnostic analysis are supported by numerical experiments.展开更多
The Tibetan Plateau(TP)is an area sensitive to climate change,where the ozone distribution affects the atmospheric environment of the TP and its surrounding regions.The relatively low total column ozone over the TP in...The Tibetan Plateau(TP)is an area sensitive to climate change,where the ozone distribution affects the atmospheric environment of the TP and its surrounding regions.The relatively low total column ozone over the TP in boreal summer and its spatiotemporal variations have received extensive attention.In this study,five-year balloon-borne measurements of ozone over Lhasa in boreal summer are used to investigate the influences of the apparent heat source(Q1)on the ozone vertical structure over the plateau.The mechanisms for the above processes are also explored.The results show that the tropospheric ozone mixing ratio over Lhasa decreases when the total atmospheric Q1 in the troposphere over the TP is relatively high.Strengthened ascending motions are accompanied by enhanced Q1 over the main TP region.Consequently,the tropospheric ozone mixing ratio over Lhasa decreases when Q1 is higher in summer,which is attributed to the upward transport of the ozone-poor surface air.展开更多
The interannual variations of atmospheric heat sources and moisture sinks over the Equatorial Pacific and their relations with the SST anomalies are studied using ECMWF reanalysis data from 1979 to 1993. It is found b...The interannual variations of atmospheric heat sources and moisture sinks over the Equatorial Pacific and their relations with the SST anomalies are studied using ECMWF reanalysis data from 1979 to 1993. It is found by singular value decomposition (SVD) analysis that the region in the tropical Pacific with high positive correlation between the vertically integrated heat source <Q1> anomaly and the SST anomaly, and between the vertically integrated moisture sink <Q2> anomaly and the SST anomaly, is mainly located in a long and narrow belt to the east of 170 °E between 5 °S and 5 °N. The analysis of the vertical structure of atmospheric heat sources and moisture sinks shows that the interannual variations of Q1, Q2 and SST in the equatorial central and eastern Pacific are strongly and positively correlated in the whole troposphere except the bottom (962.5 hPa) and the top (85 hPa) layers. However, in the western Pacific, the interannual variations of Q1 below 850 hPa is negatively related to the SST. The correlation coefficient at the level 962.5 hPa reaches even –0.59. In other layers the positive correlation between the interannual variations of Q1, Q2 and the SST are weak in the western Pacific.展开更多
By using a linear baroclinic model(LBM),this study investigates the different Rossby wave train(RWT)patterns associated with the Tibetan Plateau(TP)upper-atmospheric heat source(TPUHS)that is anomalously shallower and...By using a linear baroclinic model(LBM),this study investigates the different Rossby wave train(RWT)patterns associated with the Tibetan Plateau(TP)upper-atmospheric heat source(TPUHS)that is anomalously shallower and deeper in boreal summer.Observational results indicate the different RWT patterns between the developing and decaying periods of synoptic TPUHS events,when the anomalous TPUHS develops from a relatively shallower to a deeper TP heat source.Based on the different vertical heating profiles between these two periods in observation,this study forces the LBM with prescribed TPUHS profiles to mimic a shallower and deeper summer TP heat source.The results show that the atmospheric responses to a shallower and deeper TPUHS do exhibit different RWT patterns that largely resemble those in observation.Namely,corresponding RWT pattern to a shallower TPUHS stretches from the TP to the west coast of America,while that to a deeper TPUHS extends from the TP region to Alaska.展开更多
The characteristics of atmospheric heat source associated with the summer monsoon onset in the South China Sea (SCS) are studied using ECMWF reanalysis data from 1979 to 1993. A criterion of the SCS summer monsoon ons...The characteristics of atmospheric heat source associated with the summer monsoon onset in the South China Sea (SCS) are studied using ECMWF reanalysis data from 1979 to 1993. A criterion of the SCS summer monsoon onset is defined by the atmospheric heat source. Applying this criterion to the 15-year (1979 – 1993) mean field, the onset of the SCS summer monsoon is found to occur in the fourth pentad of May. And this criterion can also give reasonable results for the onset time of the SCS summer monsoon on a year-to-year basis. In addition, pretty high correlation has been found between the onset time of the SCS summer monsoon and the zonal mean vertically integrated heat source <Q1> at 40°S in April. The causes for the late or early onset of the SCS summer monsoon and the close relationship between the onset time and the zonal mean vertically integrated heat source <Q1> at 40 °S in April might be explained by the variations in intensity of the Hadley circulation.展开更多
NCEP-NCAR reanalysis data and a 47-yr daily precipitation dataset from a network of 42 rain gauges are used to analyze the atmospheric heat source (〈Q1〉) anomaly over the Tibetan Plateau (TP) and its influence o...NCEP-NCAR reanalysis data and a 47-yr daily precipitation dataset from a network of 42 rain gauges are used to analyze the atmospheric heat source (〈Q1〉) anomaly over the Tibetan Plateau (TP) and its influence on the summer precipitation anomaly in the Sichuan-Chongqing region. Results show that the vertical advection of 〈Ql〉 over the central TP is a major factor affecting summer precipitation in the Sichuan-Chongqing region. When the vertical ad- vection of〈Q1〉 over the central TP is strengthened, the South Asian high shifts further than normal to the south and east, the western Pacific subtropical high shifts further than normal to the south and west, and the Indian low weak- ens. This benefits the transport of warm moist air from the low latitude oceans to the Sichuan-Chongqing region. Correspondingly, in the high latitudes, two ridges and one trough form, which lead to cool air moving southward. These two air masses converge over the Sicbuan -chongqing region, leading to significant precipitation. In contrast, when the vertical advection of 〈Q1〉 over the central TP is weakened, the South Asian high moves to the north and west, the subtropical high moves eastward and northward, and the Indian low strengthens. This circulation pattern is unfavorable for warm air advection from the south to the Sichuan-Chongqing region, and the cool air further north cannot move southward because of the presence of two troughs and one ridge at high latitude. Thus, ascent over the Sichuan-Chongqing region is weakened, resulting in less precipitation.展开更多
Using the 1961–1995 monthly averaged meteorological data from 148 surface stations in the Qinghai-Xizang Plateau (QXP) and its surrounding areas, calculation of the 35-year atmospheric heat source/sink (<Qi>) a...Using the 1961–1995 monthly averaged meteorological data from 148 surface stations in the Qinghai-Xizang Plateau (QXP) and its surrounding areas, calculation of the 35-year atmospheric heat source/sink (<Qi>) and an analysis on its climatic features and relation to rainfall in China have been made. It is found that on the average, the atmospheric heat source over the QXP is the strongest in June (78 W / m2) and cold source is the strongest in December (?72 W/m2). The sensible heat of the surface increases remarkably over the southwest of the QXP, causing the obvious increase of <Qi> there in February and March, which makes a center of the atmospheric heat source appear over the north slope of the Himalayas. Afterwards, this center continues to intensify and experiences noticeable migration westwards twice, separately occurring in April and June. The time when the atmosphere over the east of the QXP becomes heat source and reaches strongest is one month later than that over the southwest of the QXP. In summer, the latent heat of condensation becomes a heating factor as important as the sensible heat and is also a main factor that makes the atmospheric heat source over the east of the QXP continue growing. On the interdecadal time scale, (Q1) of the QXP shows an abrupt change in 1977 and a remarkable increase after 1977. The atmospheric heat source of the spring over the QXP is a good indicator for the subsequent summer rainfall over the valleys of the Changjiang and Huaihe rivers and South China and North China. There is remarkable positive correlation between the QXP heat source of summer and the summer rainfall in the valleys of the Changjiang River.展开更多
Based on the final analyses data (FNL) of the Global Forecasting System of the NCEP and the obser- vational radiosonde data, the evolution mechanism of an eastward-moving low-level vortex over the Tibetan Plateau in...Based on the final analyses data (FNL) of the Global Forecasting System of the NCEP and the obser- vational radiosonde data, the evolution mechanism of an eastward-moving low-level vortex over the Tibetan Plateau in June 2008 was analyzed. The results show that the formation of the vortex was related to the convergence between the northwesterly over the central Tibetan Plateau from the westerly zone and the southerly from the Bay of Bengal at 500 hPa, and also to the divergence associated with the entrance re- gion of the upper westerly jet at 200 hPa. Their dynamic effects were favorable for ascending motion and forming the vortex over the Tibetan Plateau. Furthermore, the effect of the atmospheric heat source (Q1) is discussed based on a transformed potential vorticity (PV) tendency equation. By calculating the PV budgets, we showed that Q1 had a great inffuence on the intensity and moving direction of the vortex. In the developing stage of the vortex, the heating of the vertically integrated Q1 was centered to the east of the vortex center at 500 hPa, increasing PV tendency to the east of the vortex. As a result, the vortex strengthened and moved eastward through the vertically uneven distribution of Q1. In the decaying stage, the horizontally uneven heating of Q1 at 500 hPa weakened the vortex through causing the vortex tubes around the vortex to slant and redistributing the vertical vorticity field.展开更多
The Tibetan Plateau(TP),acting as a large elevated land surface and atmospheric heat source during spring and summer,has a substantial impact on regional and global weather and climate.To explore the multi-scale tempo...The Tibetan Plateau(TP),acting as a large elevated land surface and atmospheric heat source during spring and summer,has a substantial impact on regional and global weather and climate.To explore the multi-scale temporal variation in the thermal forcing effect of the TP,here we calculated the surface sensible heat and latent heat release based on 6-h routine observations at 80(32)meteorological stations during the period 1979–2016(1960–2016).Meanwhile,in situ air-column net radiation cooling during the period 1984–2015 was derived from satellite data.This new data-set provides continuous,robust,and the longest observational atmospheric heat source/sink data over the third pole,which will be helpful to better understand the spatial-temporal structure and multi-scale variation in TP diabatic heating and its influence on the earth’s climatic system.展开更多
In this paper, the NCEP-NCAR daily reanalysis data are used to investigate the characteristics of the atmospheric heat source/sink (AHSS) over South Asia (SA) and southern Indian Ocean (SIO). The thermal differe...In this paper, the NCEP-NCAR daily reanalysis data are used to investigate the characteristics of the atmospheric heat source/sink (AHSS) over South Asia (SA) and southern Indian Ocean (SIO). The thermal differences between these two regions and their influence on the outbreak of the Indian summer monsoon (ISM) are explored. Composite analysis and correlation analysis are applied. The results indicate that the intraseasonal variability of AHSS is signi- ficant in SA but insignificant in the SIO. Large inland areas in the Northern Hemisphere still behave as a heat sink in March, similar to the situation in winter. Significant differences are found in the distribution of AHSS between the ocean and land, with distinct land-ocean thermal contrast in April, and the pattern presents in the transitional period right before the ISM onset. In May, strong heat centers appear over the areas from the Indochina Peninsula to the Bay of Bengal and south of the Tibetan Plateau (TP), which is a typical pattern of AHSS distribution during the monsoon season. The timing of SA-SIO thermal difference turning positive is about 15 pentads in advance of the onset of the ISM. Then, after the thermal differences have turned positive, a pre-monsoon meridional circulation cell develops due to the near-surface heat center and the negative thermal contrast center, after which the meridional circulation of the ISM gradually establishes. In years of early (late) conversion of the SASIO thermal difference turning from neg- ative to positive, the AHSS at all levels over the TP and SIO converts later (earlier) than normal and the establish- ment of the ascending and descending branches of the ISM's meridional circulation is later (earlier) too. Meanwhile, the establishment of the South Asian high over the TP is later (earlier) than normal and the conversion of the Mas- carene high from winter to summer mode occurs anomalously late (early). As a result, the onset of the ISM is later (earlier) than normal. However, the difference in vorticity between early and late conversion only shows in the changes of strong vorticity centers' location in the upper and lower troposphere.展开更多
基金National Natural Science Foundation of China(41275080)China Meteorological Administration Special Public Welfare Research Fund(GYHY201306022)Open Research Fund Program of Plateau Atmosphere and Environment Key Laboratory of Sichuan Province(PAEKL-2010-C3)
文摘NCEP/NCAR reanalysis data and a 30-year precipitation dataset of observed daily rainfall from 109 gauge stations are utilized in this paper.Using the REOF we analyzed the spatial distribution of precipitation in the 109 stations in the Yangtze River Basin in Meiyu periods from 1978 to 2007.The result showed that the spatial distribution of precipitation in the Yangtze River Basin can be divided into the south and north part.As a result,relationships between an atmospheric heating source(hereafter called <Q_1>) over the Asian region and the precipitation on the south and north side of Yangtze River in Meiyu periods were separately studied in this paper.The results are shown as follows.The flood/drought to the north of Yangtze River(NYR) was mainly related to the <Q_1> over the East Asia summer monsoon region:when the <Q_1> over the Philippines through Western Pacific and the south China was weakened(strengthened),it would probably result in the flood(drought) in NYR;and the precipitation on the south side of Yangtze River(SYR)was related to the <Q_1> over the east Asia and Indian summer monsoon region:when the <Q_1> over the areas from south China to the northern East China Sea and Yellow Sea and south-eastern Japan was strengthened(weakened),and the <Q_1> over the areas from the Bay of Bengal to south-eastern Tibetan Plateau was weakened(strengthened),it will lead to flood(drought) in SYR.
基金supported by the Open Research Fund of TPESER(Grant No.TPESER202205)the Second Tibetan Plateau Scientific Expedition and Research Program(Grant No.2019QZKK0101)。
文摘The spring atmospheric heat source(AHS)over the Tibetan Plateau(TP)has been suggested to affect the Asian summer monsoon and summer precipitation over South China.However,its influence on the summer precipitation in Northeast China(NEC)remains unknown.The connection between spring TP AHS and subsequent summer precipitation over NEC from 1961 to 2020 is analyzed in this study.Results illustrate that stronger spring TP AHS can enhance subsequent summer NEC precipitation,and higher soil moisture in the Yellow River Valley-North China region(YRVNC)acts as a bridge.During spring,the strong TP AHS could strengthen the transportation of water vapor to East China and lead to excessive rainfall in the YRVNC.Thus,soil moisture increases,which regulates local thermal conditions by decreasing local surface skin temperature and sensible heat.Owing to the memory of soil moisture,the lower spring sensible heat over the YRVNC can last until mid-summer,decrease the land–sea thermal contrast,and weaken the southerly winds over the East Asia–western Pacific region and convective activities over the South China Sea and tropical western Pacific.This modulates the East Asia–Pacific teleconnection pattern,which leads to a cyclonic anomaly and excessive summer precipitation over NEC.
基金supported by the the National Natural Science Foundation of China (Grants 91337216 and 41175070)and the Open Project of the Key Laboratory of Meteorological Disaster of Ministry of Education (Grant KLME1309)
文摘As a huge,intense,and elevated atmospheric heat source(AHS) approaching the mid-troposphere in spring and summer,the Tibetan Plateau(TP) thermal forcing is perceived as an important factor contributing to the formation and variation of the Asian summer monsoon.Despite numerous studies devoted to determine the strength and change of the thermal forcing of the TP on the basis of various data sources and methods,uncertainties remain in quantitative estimation of the AHS and will persist for the following reasons:(1) Routine meteorological stations cover only limited regions and show remarkable spatial inhomogeneity with most distributed in the central and eastern plateau.Moreover,all of these stations are situated at an altitude below 5000 m.Thus,the large area above that elevation is not included in the data.(2) Direct observations on heat fluxes do not exist at most stations,and the sensible heat flux(SHF) is calculated by the bulk formula,in which the drag coefficient for heat is often treated as an empirical constant without considering atmospheric stability and thermal roughness length.(3) Radiation flux derived by satellite remote sensing shows a large discrepancy in the algorithm in data inversion and complex terrain.(4) In reanalysis data,besides the rare observational records employed for data assimilation,model bias in physical processes induces visible errors in producing the diabatic heating fields.
基金supported by the National Natural Science Foundation of China(Grant Nos. 40633018 and 40675036)
文摘NCEP/NCAR reanalysis data and a 47-year precipitation dataset are utilized to analyze the relationship between an atmospheric heat source (hereafter called 〈 Q1 〉) over the Qinghai-Xizang Plateau (QXP) and its surrounding area and precipitation in northwest China. Our main conclusions are as follows: (1) The horizontal distribution of 〈 Q1 〉 and its changing trend are dramatic over QXP in the summer. There are three strong centers of 〈 Q1 〉 over the south side of QXP with obvious differences in the amount of yearly precipitation and the number of heat sinks predominate in the arid and semi-arid regions of northwest China (NWC), beside the northern QXP with an obvious higher intensity in years with less precipitation. (2) In the summer, the variation of the heat source's vertical structure is obviously different between greater and lesser precipitation years in eastern northwest China (ENWC). The narrow heat sink belt forms between the northeast QXP and the southwestern part of Lake Baikal. In July and August of greater precipitation years, the heating center of the eastern QXP stays nearly over 35°N, and at 400 hPa of the eastern QXP, the strong upward motion of the heating center constructs a closed secondary vertical circulation cell over the northeast QXP (40~ 46~N), which is propitious to add precipitation over the ENWC. Otherwise, the heating center shifts to the south of 30°N and disappears in July and August of lesser precipitation years, an opposite secondary circulation cell forms over the northeast QXP, which is a disadvantage for precipitation. Meanwhile, the secondary circulation cell in years with more or less precipitation over the ENWC is also related to the heat source over the Lake Baikal. (3) The vertical structure of the heat source over the western QXP has obvious differences between greater and lesser precipitation years in western northwest China in June and July. The strong/weak heat source over the western QXP produces relatively strong/weak ascending motion and correspondingly constructs a secondary circulation cell in lesser/greater precipitation years.
基金jointly supported by the National Science Foundation of China(Grant Nos.91437105,41575041 and 41430533)the China Meteorological Administration Special Public Welfare Research Fund(Grant No.GYHY201406001)
文摘This study demonstrates the two different Rossby wave train(RWT) patterns related to the developing/decaying upper atmospheric heat source over the Tibetan Plateau(TPUHS) in boreal summer. The results show that the summer TPUHS is dominated by quasi-biweekly variability, particularly from late July to mid-August when the subtropical jet steadily stays to the north of the TP. During the developing period of TPUHS events, the intensifying TPUHS corresponds to an anomalous upper-tropospheric high over the TP, which acts as the main source of a RWT that extends northeastward, via North China, the central Pacific and Alaska, to the northeastern Pacific region. This RWT breaks up while the anomalous high is temporarily replaced by an anomalous low due to the further deepened convective heating around the TPUHS peak. However, this anomalous low, though existing for only three to four days due to the counteracting dynamical effects of the persisting upper/lower divergence/convergence over the TP, acts as a new wave source to connect to an anomalous dynamical high over the Baikal region. Whilst the anomalous low is diminishing rapidly, this Baikal high becomes the main source of a new RWT, which develops eastward over the North Pacific region till around eight days after the TPUHS peak. Nevertheless, the anomaly centers along this decaying-TPUHS-related RWT mostly appear much weaker than those along the previous RWT.Therefore, their impacts on circulation and weather differ considerably from the developing to the decaying period of TPUHS events.
基金supported by the Key Research Program of Frontier Sciences of the Chinese Academy of Sciencesthe Major Research Plan of the National Natural Science Foundation of China(Grant Nos.91637312,91437219,91637208,and 41530426)the Special Program for Applied Research on Super Computation of the NSFC–Guangdong Joint Fund(second phase)(Grant No.U1501501)
文摘To cherish the memory of the late Professor Duzheng YE on what would have been his 100 th birthday, and to celebrate his great accomplishment in opening a new era of Tibetan Plateau(TP) meteorology, this review paper provides an assessment of the atmospheric heat source(AHS) over the TP from different data resources, including observations from local meteorological stations, satellite remote sensing data, and various reanalysis datasets. The uncertainty and applicability of these heat source data are evaluated. Analysis regarding the formation of the AHS over the TP demonstrates that it is not only the cause of the atmospheric circulation, but is also a result of that circulation. Based on numerical experiments, the review further demonstrates that land–sea thermal contrast is only one part of the monsoon story. The thermal forcing of the Tibetan–Iranian Plateau plays a significant role in generating the Asian summer monsoon(ASM), i.e., in addition to pumping water vapor from sea to land and from the lower to the upper troposphere, it also generates a subtropical monsoon–type meridional circulation subject to the angular momentum conservation, providing an ascending-air large-scale background for the development of the ASM.
基金General Program from National Natural Science Foundation of China(40475029)Key Projects of the National Natural Science Foundation of China(40633018,90711003)
文摘There has been a lot of discussion about the atmospheric heat source over the Tibetan Plateau(TP)and the low-frequency oscillation of atmospheric circulation.However,the research on low-frequency oscillation of heat source over TP and its impact on atmospheric circulation are not fully carried out.By using the vertically integrated apparent heat source which is calculated by the derivation method,main oscillation periods and propagation features of the summer apparent heat source over the eastern TP(Q1ETP)are diagnosed and analyzed from 1981 to 2000.The results are as follows:(1)Summer Q1ETP has two significant oscillation periods:one is 10-20d(BWO,Quasi-Biweekly Oscillation)and the other is 30-60d(LFO,Low-frequency Oscillation).(2)A significant correlation is found between Q1ETP and rainfall over the eastern TP in 1985 and 1992,showing that the low-frequency oscillation of heat source is likely to be stimulated by oscillation of latent heat.(3)The oscillation of heat source on the plateau mainly generates locally but sometimes originates from elsewhere.The BWO of Q1ETP mainly exhibits stationary wave,sometimes moves out(mainly eastward),and has a close relationship with the BWO from the Bay of Bengal.Showing the same characteristics as BWO,the LFO mainly shows local oscillation,occasionally propagates(mainly westward),and connects with the LFO from East China.In summary,more attention should be paid to the study on BWO of Q1ETP.
基金National Key Program for Developing Basic Research (2009CB421404)Key Program of National Science Foundation of China (40730951)Program of National Science Foundation of China(40605028)
文摘Based on the NCEP/NCAR reanalysis data and the observed precipitation data in the south of China from 1958 to 2000,the impact of 30 to 60 day oscillation of atmospheric heat sources on the drought and flood events in June in the south of China is discussed.During the flood(drought) events,there exists an anomalous low-frequency anticyclone(cyclone) at the low level of the troposphere over the South China Sea and the northwestern Pacific,accompanied with anomalous low-frequency heat sinks(heat sources),while there exists an anomalous low-frequency cyclone(anticyclone) with anomalous heat sources(sinks) over the area from the south of China to the south of Japan.On average,the phase evolution of the low-frequency in drought events is 7 to 11 days ahead of that in flood events in May to June in the south of China.In flood events,low-frequency heat sources and cyclones are propagated northward from the southern South China Sea,northwestward from the warm pool of the western Pacific and westward from the northwestern Pacific around 140°E,which have very important impact on the abundant rainfall in June in the south of China.However,in drought events,the northward propagations of the low-frequency heat sources and cyclones from the South China Sea and its vicinity are rather late compared with those in flood events,and there is no obvious westward propagation of the heat sources from the northwestern Pacific.The timing of the low-frequency heat source propagation has remarkable impact on the June rainfall in the south of China.
基金Strategic Priority Research Program of Chinese Academy of Sciences(XDA20060501)2019 Non-funded Science and Technology Research Project of Zhanjiang(20051817454-6338)2020 Guangdong Ocean University College Student Innovation and Entrepreneurship Project(580520153)
文摘Investigating the temporal and spatial distributions of the atmospheric heat sources(AHS)over the Tibetan Plateau-Tropical Indian Ocean(TP-TIO)region is of great importance for the understanding of the evolution and development of the South Asian summer monsoon(SASM).This study used the Japanese 55-year Reanalysis(JRA-55)data from 1979 to 2016 and adopted statistical methods to study the characteristics of the AHS between the TP and TIO,and theirs link to the SASM on an interannual scale.The results indicated that the monthly variations of the AHS in the two regions were basically anti-phase,and that the summer AHS in the TP was obviously stronger than that in the TIO.There were strong AHS and atmospheric moisture sink(AMS)centers in both the eastern and western TP in summer.The AHS center in the east was stronger than that in the west,and the AMS centers showed the opposite pattern.In the TIO,a strong AHS center in the northwest-southeast direction was located near 10°S,90°E.Trend analysis showed that summer AHS in the TIO was increasing significantly,especially before 1998,whereas there was a weakening trend in the TP.The difference of the summer AHS between the TP and TIO(hereafter IQ)was used to measure the thermal contrast between the TP and the TIO.The IQ showed an obvious decreasing trend.After 1998,there was a weak thermal contrast between the TP and the TIO,which mainly resulted from the enhanced AHS in the TIO.The land-sea thermal contrast,the TIO Hadley circulation in the southern hemisphere and the SASM circulation all weakened,resulting in abnormal circulation and abnormal precipitation in the Bay of Bengal(BOB).
基金973 program (2010CB428504)National Natural Science Foundation of China (40730953+3 种基金40805025)National Public Benefit Research Foundation of China (GYHY200806004GYHY200706005)Jiangsu Natural Science Foundation (BK2008027)
文摘With the ERA40 reanalysis daily data for 1958-2001, the global atmospheric seasonal-mean diabatic heating and transient heating are computed by using the residual diagnosis of the thermodynamic equation. The three-dimensional structures for the two types of heating are described and compared. It is demonstrated that the diabatic heating is basically characterized by strong and deep convective heating in the tropics, shallow heating in the midlatitudes and deep cooling in the subtropics and high-latitudes. The tropical diabatic heating always shifts towards the summer hemisphere, but the midlatitude heating and high-latitude cooling tend to be strong in the winter hemisphere. On the other hand, the transient heating due to transient eddy transfer is characterized by a meridional dipole pattern with cooling in the subtropics and heating in the mid- and high-latitudes, as well as by a vertical dipole pattern in the midlatitudes with cooling at lower levels and heating in the mid- and higher-levels, which gives rise to a sloped structure in the transient heating oriented from the lower levels in the high latitudes and higher levels in the midlatitudes. The transient heating is closely related to a storm track along which the transient eddy activity is much stronger in the winter hemisphere than in the summer hemisphere. In Northern Hemisphere, the transient heating locates in the western oceanic basin, while it is zonally-oriented in Southern Hemisphere, for which the transient heating and cooling are far separated over South Pacific during the cold season. The transient heating tends to cancel the diabatic heating over most of the globe. However, it dominates the mid-tropospheric heating in the midlatitudes. Therefore, the atmospheric transient processes act to help the atmosphere gain more heat in the high-latitudes and in the mid-troposphere of midlatitudes, reallocating the atmospheric heat obtained from the diabatic heating.
基金This work was supported by the National Natural Science Foundation of China(Grant No.42030603)the Natural Science Foundation of Yunnan Province(2019FY003006)the Postgraduate Research and Innovation foundation of Yunnan University(2021Z017).
文摘Based on the fifth-generation reanalysis dataset from the European Centre for Medium-Range Weather Forecasts for 1979–2019,we investigated the effects of the circumglobal teleconnection(CGT)on the interdecadal variation of the March atmospheric heat source(AHS)over the Southeast Asian low-latitude highlands(SEALLH).The dominant mode of the March AHS over the SEALLH features a monopole structure with an 8–11-year period.Decadal variations in the AHS make an important contribution to the 11-year low-pass filtered component of the AHS index,whichexplains 54.3%of the total variance.The CGT shows a clear interdecadal variation,which explains 59.3%of the total variance.The March AHS over the SEALLH is significantly related to the CGT on interdecadal timescales.When the CGT is optimally excited by a significant cyclonic vorticity source near northern Africa(i.e.,in its positive phase),the SEALLH is dominated by anomalous southerly winds and ascending motions on the east of the anomalous cyclone.The enhanced advection and upward transfer result in a high-enthalpy air mass that converges into and condenses over the SEALLH,leading to a largerthan-average March AHS over this region.The key physical processes revealed by this diagnostic analysis are supported by numerical experiments.
基金This research was supported by the second Tibetan Plateau Scientific Expedition and Research Program(STEP)[grant number 2019QZKK0604]the National Natural Science Foundation of China[grant numbers 91837311,41705025,and 41705021].
文摘The Tibetan Plateau(TP)is an area sensitive to climate change,where the ozone distribution affects the atmospheric environment of the TP and its surrounding regions.The relatively low total column ozone over the TP in boreal summer and its spatiotemporal variations have received extensive attention.In this study,five-year balloon-borne measurements of ozone over Lhasa in boreal summer are used to investigate the influences of the apparent heat source(Q1)on the ozone vertical structure over the plateau.The mechanisms for the above processes are also explored.The results show that the tropospheric ozone mixing ratio over Lhasa decreases when the total atmospheric Q1 in the troposphere over the TP is relatively high.Strengthened ascending motions are accompanied by enhanced Q1 over the main TP region.Consequently,the tropospheric ozone mixing ratio over Lhasa decreases when Q1 is higher in summer,which is attributed to the upward transport of the ozone-poor surface air.
基金National Natural Science Foundation of China (40275026) Part One of National Key Fundamental Research and Development Planning Project (G1998040900)
文摘The interannual variations of atmospheric heat sources and moisture sinks over the Equatorial Pacific and their relations with the SST anomalies are studied using ECMWF reanalysis data from 1979 to 1993. It is found by singular value decomposition (SVD) analysis that the region in the tropical Pacific with high positive correlation between the vertically integrated heat source <Q1> anomaly and the SST anomaly, and between the vertically integrated moisture sink <Q2> anomaly and the SST anomaly, is mainly located in a long and narrow belt to the east of 170 °E between 5 °S and 5 °N. The analysis of the vertical structure of atmospheric heat sources and moisture sinks shows that the interannual variations of Q1, Q2 and SST in the equatorial central and eastern Pacific are strongly and positively correlated in the whole troposphere except the bottom (962.5 hPa) and the top (85 hPa) layers. However, in the western Pacific, the interannual variations of Q1 below 850 hPa is negatively related to the SST. The correlation coefficient at the level 962.5 hPa reaches even –0.59. In other layers the positive correlation between the interannual variations of Q1, Q2 and the SST are weak in the western Pacific.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences [grant number XDA17010105]the National Natural Science Foundation of China [grant numbers 91437105,41430533,and 41575041]the Key Research Program of Frontier Sciences [grant number QYZDY-SSW-DQC018]
文摘By using a linear baroclinic model(LBM),this study investigates the different Rossby wave train(RWT)patterns associated with the Tibetan Plateau(TP)upper-atmospheric heat source(TPUHS)that is anomalously shallower and deeper in boreal summer.Observational results indicate the different RWT patterns between the developing and decaying periods of synoptic TPUHS events,when the anomalous TPUHS develops from a relatively shallower to a deeper TP heat source.Based on the different vertical heating profiles between these two periods in observation,this study forces the LBM with prescribed TPUHS profiles to mimic a shallower and deeper summer TP heat source.The results show that the atmospheric responses to a shallower and deeper TPUHS do exhibit different RWT patterns that largely resemble those in observation.Namely,corresponding RWT pattern to a shallower TPUHS stretches from the TP to the west coast of America,while that to a deeper TPUHS extends from the TP region to Alaska.
基金National Natural Science Foundation of China (40275026) Part One of National KeyFundamental Research and Development Planning Project (G1998040900)
文摘The characteristics of atmospheric heat source associated with the summer monsoon onset in the South China Sea (SCS) are studied using ECMWF reanalysis data from 1979 to 1993. A criterion of the SCS summer monsoon onset is defined by the atmospheric heat source. Applying this criterion to the 15-year (1979 – 1993) mean field, the onset of the SCS summer monsoon is found to occur in the fourth pentad of May. And this criterion can also give reasonable results for the onset time of the SCS summer monsoon on a year-to-year basis. In addition, pretty high correlation has been found between the onset time of the SCS summer monsoon and the zonal mean vertically integrated heat source <Q1> at 40°S in April. The causes for the late or early onset of the SCS summer monsoon and the close relationship between the onset time and the zonal mean vertically integrated heat source <Q1> at 40 °S in April might be explained by the variations in intensity of the Hadley circulation.
基金Supported by the National Natural Science Foundation of China(41505078,41275080,91537214,41275079,41305077,and 41405069)Scientific Research Fund of CUIT(KYTZ201639)
文摘NCEP-NCAR reanalysis data and a 47-yr daily precipitation dataset from a network of 42 rain gauges are used to analyze the atmospheric heat source (〈Q1〉) anomaly over the Tibetan Plateau (TP) and its influence on the summer precipitation anomaly in the Sichuan-Chongqing region. Results show that the vertical advection of 〈Ql〉 over the central TP is a major factor affecting summer precipitation in the Sichuan-Chongqing region. When the vertical ad- vection of〈Q1〉 over the central TP is strengthened, the South Asian high shifts further than normal to the south and east, the western Pacific subtropical high shifts further than normal to the south and west, and the Indian low weak- ens. This benefits the transport of warm moist air from the low latitude oceans to the Sichuan-Chongqing region. Correspondingly, in the high latitudes, two ridges and one trough form, which lead to cool air moving southward. These two air masses converge over the Sicbuan -chongqing region, leading to significant precipitation. In contrast, when the vertical advection of 〈Q1〉 over the central TP is weakened, the South Asian high moves to the north and west, the subtropical high moves eastward and northward, and the Indian low strengthens. This circulation pattern is unfavorable for warm air advection from the south to the Sichuan-Chongqing region, and the cool air further north cannot move southward because of the presence of two troughs and one ridge at high latitude. Thus, ascent over the Sichuan-Chongqing region is weakened, resulting in less precipitation.
基金the National Natural Science Foundation of China (Grant No. 40075018).
文摘Using the 1961–1995 monthly averaged meteorological data from 148 surface stations in the Qinghai-Xizang Plateau (QXP) and its surrounding areas, calculation of the 35-year atmospheric heat source/sink (<Qi>) and an analysis on its climatic features and relation to rainfall in China have been made. It is found that on the average, the atmospheric heat source over the QXP is the strongest in June (78 W / m2) and cold source is the strongest in December (?72 W/m2). The sensible heat of the surface increases remarkably over the southwest of the QXP, causing the obvious increase of <Qi> there in February and March, which makes a center of the atmospheric heat source appear over the north slope of the Himalayas. Afterwards, this center continues to intensify and experiences noticeable migration westwards twice, separately occurring in April and June. The time when the atmosphere over the east of the QXP becomes heat source and reaches strongest is one month later than that over the southwest of the QXP. In summer, the latent heat of condensation becomes a heating factor as important as the sensible heat and is also a main factor that makes the atmospheric heat source over the east of the QXP continue growing. On the interdecadal time scale, (Q1) of the QXP shows an abrupt change in 1977 and a remarkable increase after 1977. The atmospheric heat source of the spring over the QXP is a good indicator for the subsequent summer rainfall over the valleys of the Changjiang and Huaihe rivers and South China and North China. There is remarkable positive correlation between the QXP heat source of summer and the summer rainfall in the valleys of the Changjiang River.
基金supported by the National Natural Science Foundation of China (Grant No. 40921003)the National Key Program for Developing Basic Sciences (Grant No. 2004CB418300)the International S&T Cooperation Project of the Ministry of Science and Technology of China under Grant No.2009DFA21430
文摘Based on the final analyses data (FNL) of the Global Forecasting System of the NCEP and the obser- vational radiosonde data, the evolution mechanism of an eastward-moving low-level vortex over the Tibetan Plateau in June 2008 was analyzed. The results show that the formation of the vortex was related to the convergence between the northwesterly over the central Tibetan Plateau from the westerly zone and the southerly from the Bay of Bengal at 500 hPa, and also to the divergence associated with the entrance re- gion of the upper westerly jet at 200 hPa. Their dynamic effects were favorable for ascending motion and forming the vortex over the Tibetan Plateau. Furthermore, the effect of the atmospheric heat source (Q1) is discussed based on a transformed potential vorticity (PV) tendency equation. By calculating the PV budgets, we showed that Q1 had a great inffuence on the intensity and moving direction of the vortex. In the developing stage of the vortex, the heating of the vertically integrated Q1 was centered to the east of the vortex center at 500 hPa, increasing PV tendency to the east of the vortex. As a result, the vortex strengthened and moved eastward through the vertically uneven distribution of Q1. In the decaying stage, the horizontally uneven heating of Q1 at 500 hPa weakened the vortex through causing the vortex tubes around the vortex to slant and redistributing the vertical vorticity field.
基金This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences[grant number XDA19070404]the National Natural Science Foundation of China[grant numbers 41725018 and 91637312].
文摘The Tibetan Plateau(TP),acting as a large elevated land surface and atmospheric heat source during spring and summer,has a substantial impact on regional and global weather and climate.To explore the multi-scale temporal variation in the thermal forcing effect of the TP,here we calculated the surface sensible heat and latent heat release based on 6-h routine observations at 80(32)meteorological stations during the period 1979–2016(1960–2016).Meanwhile,in situ air-column net radiation cooling during the period 1984–2015 was derived from satellite data.This new data-set provides continuous,robust,and the longest observational atmospheric heat source/sink data over the third pole,which will be helpful to better understand the spatial-temporal structure and multi-scale variation in TP diabatic heating and its influence on the earth’s climatic system.
基金Supported by the National Natural Science Foundation of China(91537214,41275079,41405069,41305077,and 41505078)China Meteorological Administration Special Public Welfare Research Fund(GYHY201506001)+1 种基金Scientific Research Fund of Sichuan Education Department(16ZA0203)Chengdu University of Information Technology Scientific Research Fund(J201516,J201518,and KYTZ201517)
文摘In this paper, the NCEP-NCAR daily reanalysis data are used to investigate the characteristics of the atmospheric heat source/sink (AHSS) over South Asia (SA) and southern Indian Ocean (SIO). The thermal differences between these two regions and their influence on the outbreak of the Indian summer monsoon (ISM) are explored. Composite analysis and correlation analysis are applied. The results indicate that the intraseasonal variability of AHSS is signi- ficant in SA but insignificant in the SIO. Large inland areas in the Northern Hemisphere still behave as a heat sink in March, similar to the situation in winter. Significant differences are found in the distribution of AHSS between the ocean and land, with distinct land-ocean thermal contrast in April, and the pattern presents in the transitional period right before the ISM onset. In May, strong heat centers appear over the areas from the Indochina Peninsula to the Bay of Bengal and south of the Tibetan Plateau (TP), which is a typical pattern of AHSS distribution during the monsoon season. The timing of SA-SIO thermal difference turning positive is about 15 pentads in advance of the onset of the ISM. Then, after the thermal differences have turned positive, a pre-monsoon meridional circulation cell develops due to the near-surface heat center and the negative thermal contrast center, after which the meridional circulation of the ISM gradually establishes. In years of early (late) conversion of the SASIO thermal difference turning from neg- ative to positive, the AHSS at all levels over the TP and SIO converts later (earlier) than normal and the establish- ment of the ascending and descending branches of the ISM's meridional circulation is later (earlier) too. Meanwhile, the establishment of the South Asian high over the TP is later (earlier) than normal and the conversion of the Mas- carene high from winter to summer mode occurs anomalously late (early). As a result, the onset of the ISM is later (earlier) than normal. However, the difference in vorticity between early and late conversion only shows in the changes of strong vorticity centers' location in the upper and lower troposphere.