Atmospheric winds, air temperatures, water levels, precipitation and oceanic waves in the Charleston South Carolina (SC) coastal zone are evaluated for their intrinsic, internal variability over temporal scales rangin...Atmospheric winds, air temperatures, water levels, precipitation and oceanic waves in the Charleston South Carolina (SC) coastal zone are evaluated for their intrinsic, internal variability over temporal scales ranging from hours to multi-decades. The purpose of this study was to bring together a plethora of atmospheric and coastal ocean state variable data in a specific locale, to assess temporal variabilities and possible relationships between variables. The questions addressed relate to the concepts of weather and climate. Data comprise the basis of this study. The overall distributions of atmospheric and coastal oceanic state variable variability, including wind speed, direction and kinematic distributions and state variable amplitudes over a variety of time scales are assessed. Annual variability is shown to be highly variable from year to year, making arithmetic means mathematically tractable but physically meaningless. Employing empirical and statistical methodologies, data analyses indicate the same number of intrinsic, internal modes of temporal variability in atmospheric temperatures, coastal wind and coastal water level time series, ranging from hours to days to weeks to seasons, sub-seasons, annual, multi-year, decades, and centennial time scales. This finding demonstrates that the atmosphere and coastal ocean in a southeastern U.S. coastal city are characterized by a set of similar frequency and amplitude modulated phenomena. Kinematic hodograph descriptors of atmospheric winds reveal coherent <span style="font-family:Verdana;">rotating and rectilinear particle motions. A mathematical statistics-based</span><span style="font-family:Verdana;"> wind to wave-to-wave algorithm is developed and applied to offshore marine buoy data to create an hour-by-hour forecast capability from 1 to 24 hours;with confidence levels put forward. This </span><span style="font-family:Verdana;">affects</span><span style="font-family:Verdana;"> a different approach to the conventional deterministic model forecasting of waves.</span>展开更多
Using ECWMF ERA-40 and Interim reanalysis data, the planetary wave fluxes associated with the February extreme stratospheric polar vortex were studied. Using the three-dimensional Eliassen-Palm (EP) flux as a measure ...Using ECWMF ERA-40 and Interim reanalysis data, the planetary wave fluxes associated with the February extreme stratospheric polar vortex were studied. Using the three-dimensional Eliassen-Palm (EP) flux as a measure of the wave activity propagation, the authors show that the unusual warm years in the Arctic feature an anomalous weak stratosphere-troposphere coupling and weak downward wave flux at the lower stratosphere, especially over the North America and North Atlantic (NANA) region. The extremely cold years are characterized by strong stratosphere-troposphere coupling and strong downward wave flux in this region. The refractive index is used to examine the conception of planetary wave reflection, which shows a large refractive index (low reflection) for the extremely warm years and a small refractive index (high reflection) for the extremely cold years. This study reveals the importance of the downward planetary wave propagation from the stratosphere to the troposphere for explaining the unusual state of the stratospheric polar vortex in February.展开更多
Numerical experiments on forcing dissipation and heating response of dipole (unipole) are carried out using global spectral models with quasi-geostrophic barotropic vorticity equations. For each experiment model integ...Numerical experiments on forcing dissipation and heating response of dipole (unipole) are carried out using global spectral models with quasi-geostrophic barotropic vorticity equations. For each experiment model integration is run for 90 days on the condition of three-wave quasi-resonance. The results are given as follows: Under the effects of dipole (unipole) forcing source and basic flow intensity, there exist strong interactions among the three planetary waves and quasi-biweekly and intraseasonal oscillation of the three planetary waves. In the meantime, the changes in the intensity of dipole or unipole forcing source and basic flow have different frequency modulation effects on LFO in the middle and higher latitudes. The results of the stream function field of three quasi-resonant waves evolving with time confirm that the low-frequency oscillation exists in extratropical latitude.展开更多
Coordinated numerical ensemble experiments with six different state-of-the-art atmosphere models were used to evaluate and quantify the impact of global SST(from reanalysis data)on the early winter Arctic warming duri...Coordinated numerical ensemble experiments with six different state-of-the-art atmosphere models were used to evaluate and quantify the impact of global SST(from reanalysis data)on the early winter Arctic warming during 1982-2014.Two sets of experiments were designed:in the first set(EXP1),OISSTv2 daily sea-ice concentration and SST variations were used as the lower boundary forcing,while in the second set(EXP2)the SST data were replaced by the daily SST climatology.In the results,the multi-model ensemble mean of EXP1 showed a nearsurface(~850 hPa)warming trend of 0.4℃/10 yr,which was 80%of the warming trend in the reanalysis.The simulated warming trend was robust across the six models,with a magnitude of 0.36-0.50℃/10 yr.The global SST could explain most of the simulated warming trend in EXP1 in the mid and low troposphere over the Arctic,and accounted for 58%of the simulated near-surface warming.The results also suggest that the uppertropospheric warming(~200 hPa)over the Arctic in the reanalysis is likely not a forced signal;rather,it is caused by natural climate variability.The source regions that can potentially impact the early winter Arctic warming are explored and the limitations of the study are discussed.展开更多
This study explores the linkage between summertime temperature fluctuations over midlatitude Eurasia and the preceding Arctic sea ice concentration (SIC) by utilizing the squared norm of the temperature anomaly, the e...This study explores the linkage between summertime temperature fluctuations over midlatitude Eurasia and the preceding Arctic sea ice concentration (SIC) by utilizing the squared norm of the temperature anomaly, the essential part of local eddy available potential energy, as a metric to quantify the temperature fluctuations with weather patterns on various timescales. By comparing groups of singular value decomposition (SVD) analysis, we suggest a significant linkage between strong (weak) August 10-to-30-day temperature fluctuations over mid-west Asia and enhanced (decreased) Barents-Kara Sea ice in the previous February. We find that when the February SIC increases in the Barents-Kara Sea, a zonal dipolar pattern of SST anomalies appears in the Atlantic subpolar region and lasts from February into the summer months. Evidence suggests that in such a background state, the atmospheric circulation changes evidently from July to August, so that the August is characterized by an amplified meridional circulation over Eurasia, weakened westerlies, and high- pressure anomalies along the Arctic coast. Moreover, the 10-to-30-day wave becomes more active in the North Atlantic-Barents-Kara Sea-Central Asia regions and manifests a more evident southward propagation from the Barents- Kara Sea into the Ural region, which is responsible for the enhanced 10-to-30-day wave activity and temperature fluctuations in the region.展开更多
文摘Atmospheric winds, air temperatures, water levels, precipitation and oceanic waves in the Charleston South Carolina (SC) coastal zone are evaluated for their intrinsic, internal variability over temporal scales ranging from hours to multi-decades. The purpose of this study was to bring together a plethora of atmospheric and coastal ocean state variable data in a specific locale, to assess temporal variabilities and possible relationships between variables. The questions addressed relate to the concepts of weather and climate. Data comprise the basis of this study. The overall distributions of atmospheric and coastal oceanic state variable variability, including wind speed, direction and kinematic distributions and state variable amplitudes over a variety of time scales are assessed. Annual variability is shown to be highly variable from year to year, making arithmetic means mathematically tractable but physically meaningless. Employing empirical and statistical methodologies, data analyses indicate the same number of intrinsic, internal modes of temporal variability in atmospheric temperatures, coastal wind and coastal water level time series, ranging from hours to days to weeks to seasons, sub-seasons, annual, multi-year, decades, and centennial time scales. This finding demonstrates that the atmosphere and coastal ocean in a southeastern U.S. coastal city are characterized by a set of similar frequency and amplitude modulated phenomena. Kinematic hodograph descriptors of atmospheric winds reveal coherent <span style="font-family:Verdana;">rotating and rectilinear particle motions. A mathematical statistics-based</span><span style="font-family:Verdana;"> wind to wave-to-wave algorithm is developed and applied to offshore marine buoy data to create an hour-by-hour forecast capability from 1 to 24 hours;with confidence levels put forward. This </span><span style="font-family:Verdana;">affects</span><span style="font-family:Verdana;"> a different approach to the conventional deterministic model forecasting of waves.</span>
基金supported by the National Basic Research Program of China (973Program) (Grant No. 2010CB428603)the National Natural Science Foundation of China (Grant Nos. 40805017 and 41175041)
文摘Using ECWMF ERA-40 and Interim reanalysis data, the planetary wave fluxes associated with the February extreme stratospheric polar vortex were studied. Using the three-dimensional Eliassen-Palm (EP) flux as a measure of the wave activity propagation, the authors show that the unusual warm years in the Arctic feature an anomalous weak stratosphere-troposphere coupling and weak downward wave flux at the lower stratosphere, especially over the North America and North Atlantic (NANA) region. The extremely cold years are characterized by strong stratosphere-troposphere coupling and strong downward wave flux in this region. The refractive index is used to examine the conception of planetary wave reflection, which shows a large refractive index (low reflection) for the extremely warm years and a small refractive index (high reflection) for the extremely cold years. This study reveals the importance of the downward planetary wave propagation from the stratosphere to the troposphere for explaining the unusual state of the stratospheric polar vortex in February.
基金Natural Science Foundation of China (40275016)Operation "Six Kinds of Talents Summit"Foundation for Jiangsu Province
文摘Numerical experiments on forcing dissipation and heating response of dipole (unipole) are carried out using global spectral models with quasi-geostrophic barotropic vorticity equations. For each experiment model integration is run for 90 days on the condition of three-wave quasi-resonance. The results are given as follows: Under the effects of dipole (unipole) forcing source and basic flow intensity, there exist strong interactions among the three planetary waves and quasi-biweekly and intraseasonal oscillation of the three planetary waves. In the meantime, the changes in the intensity of dipole or unipole forcing source and basic flow have different frequency modulation effects on LFO in the middle and higher latitudes. The results of the stream function field of three quasi-resonant waves evolving with time confirm that the low-frequency oscillation exists in extratropical latitude.
基金supported by the National Key R&D Program of China[grant number 2017YFE0111800]the National Natural Science Foundation of China[grant numbers 41790472 and 41661144005]partly supported by the EU H2020 Blue-Action project[grant number 727852]。
文摘Coordinated numerical ensemble experiments with six different state-of-the-art atmosphere models were used to evaluate and quantify the impact of global SST(from reanalysis data)on the early winter Arctic warming during 1982-2014.Two sets of experiments were designed:in the first set(EXP1),OISSTv2 daily sea-ice concentration and SST variations were used as the lower boundary forcing,while in the second set(EXP2)the SST data were replaced by the daily SST climatology.In the results,the multi-model ensemble mean of EXP1 showed a nearsurface(~850 hPa)warming trend of 0.4℃/10 yr,which was 80%of the warming trend in the reanalysis.The simulated warming trend was robust across the six models,with a magnitude of 0.36-0.50℃/10 yr.The global SST could explain most of the simulated warming trend in EXP1 in the mid and low troposphere over the Arctic,and accounted for 58%of the simulated near-surface warming.The results also suggest that the uppertropospheric warming(~200 hPa)over the Arctic in the reanalysis is likely not a forced signal;rather,it is caused by natural climate variability.The source regions that can potentially impact the early winter Arctic warming are explored and the limitations of the study are discussed.
基金the National Key Research and Development Program under Grant 2022YFE0106900the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant XDA2010030804the National Natural Science Foundation of China under Grant No.41621005.
文摘This study explores the linkage between summertime temperature fluctuations over midlatitude Eurasia and the preceding Arctic sea ice concentration (SIC) by utilizing the squared norm of the temperature anomaly, the essential part of local eddy available potential energy, as a metric to quantify the temperature fluctuations with weather patterns on various timescales. By comparing groups of singular value decomposition (SVD) analysis, we suggest a significant linkage between strong (weak) August 10-to-30-day temperature fluctuations over mid-west Asia and enhanced (decreased) Barents-Kara Sea ice in the previous February. We find that when the February SIC increases in the Barents-Kara Sea, a zonal dipolar pattern of SST anomalies appears in the Atlantic subpolar region and lasts from February into the summer months. Evidence suggests that in such a background state, the atmospheric circulation changes evidently from July to August, so that the August is characterized by an amplified meridional circulation over Eurasia, weakened westerlies, and high- pressure anomalies along the Arctic coast. Moreover, the 10-to-30-day wave becomes more active in the North Atlantic-Barents-Kara Sea-Central Asia regions and manifests a more evident southward propagation from the Barents- Kara Sea into the Ural region, which is responsible for the enhanced 10-to-30-day wave activity and temperature fluctuations in the region.