In this paper, the generalized oscillator strengths (GOSs) of excitations of atomic sodium from ground state to 2p63s0 (3p, 4p, 5p, 6p) states, immersed in Debye plasma, were calculated by using wavefunctions which we...In this paper, the generalized oscillator strengths (GOSs) of excitations of atomic sodium from ground state to 2p63s0 (3p, 4p, 5p, 6p) states, immersed in Debye plasma, were calculated by using wavefunctions which were obtained numerically from the restricted Hartree-Fock (RHF) equation. This RHF equation employs the local density approach for exchange interactions including plasma Debye screening. Theoretical RHF and random phase approximation with exchange (RPAE) velocity calculations have shown that the GOSs for excitations to 3 s0(3 p,4 p,5 p,6 p)depend on the plasma Debye screening effects, as shown by the reduction in the GOS amplitude with decreasing Debye length λD. The agreement between the present RPAE V results for the transitions 3 s→3 s0(3 p,4 p,5 p)and the length calculations of Martínez-Flores was satisfactory. Correlation effects were found quite to be significant in the vicinity of the maxima of the GOS of the 3 s→3 s0(4 p,5 p,6 p)excitations by using the RPAE V approach. We note the poor influence of many electron correlations on the GOS of (3 s→3 p)transition with the same principal quantum number. Finally, we comment that the RPAE V calculations are useful in investigating electron correlation effects on the transition GOS of atomic sodium planted in Debye plasma. The present velocity results also reveal that the 3 s→3 s0(5p, 6p)transition GOSs tend to be delocalized due to more significant screening effects at Debye lengths λD=20and 30 a.u. for excited subshells 5p and 6p, respectively. We report here novel results of GOS for 3 s→3 s06ptransition obtained from different Debye lengths.展开更多
A scheme for approximate generation of an N-qubit phase gate is proposed in cavity QED based on nonidentical coupling between the atoms and the cavity. The atoms interact with a highly detuned cavity-field mode, but q...A scheme for approximate generation of an N-qubit phase gate is proposed in cavity QED based on nonidentical coupling between the atoms and the cavity. The atoms interact with a highly detuned cavity-field mode, but quantum information does not transfer between the atoms and cavity field, and thus the cavity decay is negligible. The gate time does not rise with an increase in the number of qubits. With the choice of a smaller odd number l (related to atom-cavity coupling constants), the phase gate can be generated with a higher fidelity and a higher success probability in a shorter time (the gate time is much shorter than the atomic radiative lifetime and photon lifetime). When the number of qubits N exceeds certain small values, the fidelity and success probability rise slowly with an increase in the number of qubits N. When N→∞, the fidelity and success probability infinitely approach 1, but never exceed 1.展开更多
Generally, the phase of the cold-atom interferometer is extracted from the atomic interference fringe, which can be obtained by scanning the chirp rate of the Raman lasers at a given interrogation time T. If mapping t...Generally, the phase of the cold-atom interferometer is extracted from the atomic interference fringe, which can be obtained by scanning the chirp rate of the Raman lasers at a given interrogation time T. If mapping the phase shift for each T with a series of measurements, the extraction time is limited by the protocol of each T measurement, and therefore increases dramatically when doing fine mapping with a small step of T. Here we present a new method for rapid extraction of the phase shift via phase demodulation. By using this method, the systematic shifts can be mapped though the whole interference area. This method enables quick diagnostics of the potential cause of the phase shift in specific time. We demonstrate experimentally that this method is effective for the evaluation of the systematic errors of the cold atomic gravimeter. The systematic phase error induced by the quadratic Zeeman effect in the free-falling region is extracted by this method. The measured results correspond well with the theoretic prediction and also agree with the results obtained by the fringe fitting method for each T.展开更多
We propose a scheme to implement a two-qubit conditional quantum phase gate for the intracavity field via a single three-level ∧-type atom driven by two modes in a high-Q cavity. The quantum inforraation is encoded o...We propose a scheme to implement a two-qubit conditional quantum phase gate for the intracavity field via a single three-level ∧-type atom driven by two modes in a high-Q cavity. The quantum inforraation is encoded on the Fock states of the bimodal cavity. The gate's averaged fidelity is expected to reach 99.8%.展开更多
A procedure for the preconcentration of copper was described in this paper using multi-walled carbon nanotubes (MWCNTs) oxidized by potassium permanganate as the adsorbent for the enrichment of trace copper in water s...A procedure for the preconcentration of copper was described in this paper using multi-walled carbon nanotubes (MWCNTs) oxidized by potassium permanganate as the adsorbent for the enrichment of trace copper in water samples. Important parameters, such as the sample pH, the concentration and volume of eluent, sample flow rate and volume, and interference of coexisting ions, were investigated. The obtained results indicated that proposed method possessed an excellent analytical performance. The linear range, the detection limit, and precison (RSD) were 1–100 ng/mL (R(2) = 0.9993), 0.32 ng/mL and 2.88%, respectively. The results showed that copper could be adsorbed quantitatively on the pretreated MWCNTs with potassium permanganate, and proposed method was very useful in the monitoring of copper in the environment.展开更多
The quantum effect of nonlinear co-tunnelling process, which is dependent on atom-pair tunneling and asymmetry of an double-well trap, is studied by using an asymmetrical extended Bose–Hubbard model. Due to the exist...The quantum effect of nonlinear co-tunnelling process, which is dependent on atom-pair tunneling and asymmetry of an double-well trap, is studied by using an asymmetrical extended Bose–Hubbard model. Due to the existence of atompair tunneling that describes quantum phenomena of ultracold atom-gas clouds in an asymmetrical double-well trap, the asymmetrical extended Bose–Hubbard model is better than the previous Bose–Hubbard model model by comparing with the experimental data cited from the literature. The dependence of dynamics and quantum phase transition on atom-pair tunneling and asymmetry are investigated. Importantly, it shows that the asymmetry of the extended Bose–Hubbard model,corresponding to the bias between double wells, leads to a number of resonance tunneling processes, which tunneling is renamed conditional resonance tunneling, and corrects the atom-number parity effect by controlling the bias between double wells.展开更多
The effects of non-magnetic atom vacancy on structural, martensitic phase transitions and the corresponding magnetocMoric effect in MnCoGel-x alloys are investigated using x-ray diffraction and magnetic measurements. ...The effects of non-magnetic atom vacancy on structural, martensitic phase transitions and the corresponding magnetocMoric effect in MnCoGel-x alloys are investigated using x-ray diffraction and magnetic measurements. The introduction of non-magnetic atom vacancy leads to the decrease of the martensitic transition temperature and realizes a temperature window where magnetic and martensitic phase transitions can be tuned together. Moreover, the giant magnetocaloric effect accompanied with the coupled magnetic-structural transition is ob- tained. It is observed that the peak values of magnetic entropy change of MnCoGeo.97 are about -13.9, -35.1 and -47.4J.kg-1K-1 for △H = 2, 5, 7T, respectively.展开更多
The liquid phase microextraction (LPME) was combined with the modified Graphite furnace atomic absorption spectrometry (GF-AAS) for determination of lead in the water and solid samples. In a preconcentration step, lea...The liquid phase microextraction (LPME) was combined with the modified Graphite furnace atomic absorption spectrometry (GF-AAS) for determination of lead in the water and solid samples. In a preconcentration step, lead was extracted from a 2 ml of its aqueous sample in the pH = 5 as lead-Pyrimidine-2-thiol cationic complex into a 4 μl drop of 1,2 dichloroethane and ammonium tetraphenylborate as counter ion immersed in the solution. In the drop, the lead-Pyrimidine-2-thiol ammonium tetraphenylborate ion associated complex was formed. After extraction, the microdrop was retracted and directly transferred into a graphite tube modified by [W.Pd.Mg] (c). Some effective parameters on extraction and complex formation, such as type and volume of organic solvent, pH, concentration of chelating agent and counter ion, extraction time, stirring rate and effect of salt were optimized. Under the optimum conditions, the enrichment factor and recovery were 525% and 94%, respectively. The calibration graph was linear in the range of 0.01 - 12 μg?L–1 with correlation coefficient of 0.9975 under the optimum conditions of the recommended procedure. The detection limit based on the 3Sb criterion was 0.0072 μg?L–1 and relative standard deviation (RSD) for ten replicate measurement of 0.1 μg?L–1 and 0.4 μg?L–1 lead was 4.5% and 3.8% respectively. The characteristic concentration was 0.0065 μg?L–1 equivalent to a characteristic mass of 26 fg. The results for determination of lead in reference materials, spiked tap water and seawater demonstrated the accuracy, recovery and applicability of the presented method.展开更多
A new method for analysis of trace mercury in water samples was developed, based on the combination of preconcentration/separation using dithizone-modified nanometer titanium dioxide (TiO2) as a solid phase extracta...A new method for analysis of trace mercury in water samples was developed, based on the combination of preconcentration/separation using dithizone-modified nanometer titanium dioxide (TiO2) as a solid phase extractant and determination by cold vapor atomic adsorption spectrometry (CVAAS). Dithizone was dissolved with alcohol and loaded on the surface of nano-sized TiO2 powders by stirring. The static adsorption behavior of Hg^2+on the dithizone-modified nanoparficles was investigated in detail. It was found that excellent adsorption ratio for Hg^2+ could be obtained in the pH range of 7-8 with an oscillation time of 15 rain, and a 5 mL of 3.5 mol·L^-1 HCI solution could quantitatively elute Hg^2+ from nanometer TiO2 powder. Common coexisting ions caused no obvious influence on the determination of mercury. The mechanisms for the adsorption and desorption were discussed. The detection limit (30) for Hg^2+ was calculated to be 5 ng·L^-1. The proposed method was applied to the determination of Hg^2+ in a mineral water sample and a Zhujiang River water sample. By the standard addition method, the average recoveries were found to be 94.4%-108.3% with RSD (n = 5) of 2.9%-3.5%.展开更多
We propose a scheme for implementing conditional quantum phase gates for two four-state atoms trapped in a cavity. The two ground states of the atoms are coupled through two Raman processes induced by the cavity mode ...We propose a scheme for implementing conditional quantum phase gates for two four-state atoms trapped in a cavity. The two ground states of the atoms are coupled through two Raman processes induced by the cavity mode and two classical fields. Under certain conditions nonresonant Raman processes lead to two-atom coupling and can be used to produce conditional phase gates. The scheme is insensitive to cavity decay, thermal photons, and atomic spontaneous emission. The scheme does not require individual addressing of the atoms.展开更多
In this paper, we present the analytical solution for the model that describes the interaction between a three-level atom and two systems of N-two level atoms. The effects of the quantum numbers and the coupling param...In this paper, we present the analytical solution for the model that describes the interaction between a three-level atom and two systems of N-two level atoms. The effects of the quantum numbers and the coupling parameters between spins on the Pancharatnam phase and the atomic inversion, for some special cases of the initial states, are investigated. The comparison between the two effects shows that the analytic results are well consistent.展开更多
We propose a method to directly measure phase-related noise characteristics of single-frequency lasers in the 728–980 nm band based on a 120°phase difference interferometer.Differential phase information of the ...We propose a method to directly measure phase-related noise characteristics of single-frequency lasers in the 728–980 nm band based on a 120°phase difference interferometer.Differential phase information of the laser under test is demodulated via the interferometer.Other parameters related to the phase noise characteristics such as linewidth at different observation time, phase/frequency noise, power spectrum density of phase/frequency fluctuation, and Allan deviation are further obtained.Frequency noise as low as 1 Hz^2/Hz can be measured using our system.Then the phase-related noise characteristics of two commercial lasers frequently used in cold atomic clocks are studied systematically by the method.Furthermore, several influencing factors and their relative evolution laws are also revealed, such as the pump current and frequency-locking control parameters.This would help to optimize the laser performance, select laser sources, and evaluate the system performance for cold atomic physics applications.展开更多
Using numerical solution of the full Maxwell-Bloch equations, which is obtained by the finite-difference time-domain method and the iterative predictor-orrector method, we investigate the modulation effect of relative...Using numerical solution of the full Maxwell-Bloch equations, which is obtained by the finite-difference time-domain method and the iterative predictor-orrector method, we investigate the modulation effect of relative carrierenvelope phase (hereinafter referred to as the relative phase) on resonant propagation of two-colour femtosecond ultrashort laser pulses in a V-type three-level atomic medium. It is found that the pulse splitting occurs for a smaller value of relative phase; when the value of relative phase increases to a certain value, only the variation of pulse shape is present and the pulse splitting does not occur any more; moreover, when the value of relative phase is smaller, the pulse group velocity is larger. The relative phase also has an obvious effect on population and spectral property. Different population transfers can be realized by adjusting the value of relative phase. Generally speaking, for the pulses with smaller areas their spectral strengths and frequency ranges decrease obviously with the value of relative phase increasing; for the pulses with larger areas, with value of the relative phase increasing, their spectral strengths decrease remarkably but the relative strengths of the higher frequency components increase significantly, while the spectral frequency range is not varied evidently.展开更多
A simple and sensitive solid phase extraction utilizing C18 filled cartridges incorporated with dithizone for preconcentration of lead and its subsequent determination by flame atomic absorption spectrometry (FAAS) wa...A simple and sensitive solid phase extraction utilizing C18 filled cartridges incorporated with dithizone for preconcentration of lead and its subsequent determination by flame atomic absorption spectrometry (FAAS) was developed. Several parameters such as type, concentration and volume of eluent, pH of the sample solution, flow rate of extraction and volume of the sample were evaluated. The effect of a variety of ions on preconcentration and recovery was also investigated. At pH = 7.4 and 1.0 mol?L–1 HCl eluting them, lead ions were recovered quantitatively. The limit of detection (LOD) defined as 3Sbl was determined to be 8.1 μg L–1 for 500 mL of sample solution and eluted with 5 mL of 1.0 mol?L–1 HCl under optimum conditions. The accuracy and precision (RSD %) of the method were >90% and <10%, respectively. In the end, the proposed method was applied to a number of real sugar samples and the amount of lead was determined by spiking a known concentration of lead into the solution.展开更多
By means of cavity-assisted photon interference, a simple scheme is proposed to implement a symmetric economical phase-covariant quantum cloning machine of two remote qubits, with each in a separate cavity. With our p...By means of cavity-assisted photon interference, a simple scheme is proposed to implement a symmetric economical phase-covariant quantum cloning machine of two remote qubits, with each in a separate cavity. With our present scheme, a high-fidelity cloning machine is realized. Our scheme may be quite useful in terms of distributed quantum information processing.展开更多
A review of our experience in range of electron spectroscopy of the physical vapor-phase deposition and growth of single- and multilayer nanostructures with atomic scale interfaces is presented. The foundation of an i...A review of our experience in range of electron spectroscopy of the physical vapor-phase deposition and growth of single- and multilayer nanostructures with atomic scale interfaces is presented. The foundation of an innovative methodology for the combined AES-EELS analysis of layered nanostructures is developed. The methodology includes: 1) determination of the composition, thickness, and the mechanism of phase transitions in nanocoatings under the probing depth most appropriated for the range of film thickness 1 - 10 ML;2) quantitative iteration Auger-analysis of the composition, thickness and growth mechanism of nanocoating;3) structural and phase analysis of nanocoatings with use of the analysis of position, shape and energy of the plasmon EELS peak and with subtracting the contribution from the substrate;4) analysis of phase transitions with use of the shift of the plasmon Auger-satellite and 5) non-destructive profiling of the composition of nanocoatings over depth with use of a dependence of the intensity and energy of EELS peaks on the value of the primary electron energy.展开更多
文摘In this paper, the generalized oscillator strengths (GOSs) of excitations of atomic sodium from ground state to 2p63s0 (3p, 4p, 5p, 6p) states, immersed in Debye plasma, were calculated by using wavefunctions which were obtained numerically from the restricted Hartree-Fock (RHF) equation. This RHF equation employs the local density approach for exchange interactions including plasma Debye screening. Theoretical RHF and random phase approximation with exchange (RPAE) velocity calculations have shown that the GOSs for excitations to 3 s0(3 p,4 p,5 p,6 p)depend on the plasma Debye screening effects, as shown by the reduction in the GOS amplitude with decreasing Debye length λD. The agreement between the present RPAE V results for the transitions 3 s→3 s0(3 p,4 p,5 p)and the length calculations of Martínez-Flores was satisfactory. Correlation effects were found quite to be significant in the vicinity of the maxima of the GOS of the 3 s→3 s0(4 p,5 p,6 p)excitations by using the RPAE V approach. We note the poor influence of many electron correlations on the GOS of (3 s→3 p)transition with the same principal quantum number. Finally, we comment that the RPAE V calculations are useful in investigating electron correlation effects on the transition GOS of atomic sodium planted in Debye plasma. The present velocity results also reveal that the 3 s→3 s0(5p, 6p)transition GOSs tend to be delocalized due to more significant screening effects at Debye lengths λD=20and 30 a.u. for excited subshells 5p and 6p, respectively. We report here novel results of GOS for 3 s→3 s06ptransition obtained from different Debye lengths.
基金Project supported by the National Natural Science Foundation of China (Grant No 60667001)the Science Foundation of Yanbian University, China (Grant No 2007-31)
文摘A scheme for approximate generation of an N-qubit phase gate is proposed in cavity QED based on nonidentical coupling between the atoms and the cavity. The atoms interact with a highly detuned cavity-field mode, but quantum information does not transfer between the atoms and cavity field, and thus the cavity decay is negligible. The gate time does not rise with an increase in the number of qubits. With the choice of a smaller odd number l (related to atom-cavity coupling constants), the phase gate can be generated with a higher fidelity and a higher success probability in a shorter time (the gate time is much shorter than the atomic radiative lifetime and photon lifetime). When the number of qubits N exceeds certain small values, the fidelity and success probability rise slowly with an increase in the number of qubits N. When N→∞, the fidelity and success probability infinitely approach 1, but never exceed 1.
基金supported by the National Natural Science Foundation of China(Grant Nos.11174249 and 61475139)the Ministry of Science and Technology of China(Grant No.2011AA060504)+1 种基金the National Basic Research Program of China(Grant No.2013CB329501)the Fundamental Research Funds for the Central Universities,China(Grant No.2015FZA3002)
文摘Generally, the phase of the cold-atom interferometer is extracted from the atomic interference fringe, which can be obtained by scanning the chirp rate of the Raman lasers at a given interrogation time T. If mapping the phase shift for each T with a series of measurements, the extraction time is limited by the protocol of each T measurement, and therefore increases dramatically when doing fine mapping with a small step of T. Here we present a new method for rapid extraction of the phase shift via phase demodulation. By using this method, the systematic shifts can be mapped though the whole interference area. This method enables quick diagnostics of the potential cause of the phase shift in specific time. We demonstrate experimentally that this method is effective for the evaluation of the systematic errors of the cold atomic gravimeter. The systematic phase error induced by the quadratic Zeeman effect in the free-falling region is extracted by this method. The measured results correspond well with the theoretic prediction and also agree with the results obtained by the fringe fitting method for each T.
基金Project supported by the National Natural Science Foundation of China (Grant No 10374025).
文摘We propose a scheme to implement a two-qubit conditional quantum phase gate for the intracavity field via a single three-level ∧-type atom driven by two modes in a high-Q cavity. The quantum inforraation is encoded on the Fock states of the bimodal cavity. The gate's averaged fidelity is expected to reach 99.8%.
文摘A procedure for the preconcentration of copper was described in this paper using multi-walled carbon nanotubes (MWCNTs) oxidized by potassium permanganate as the adsorbent for the enrichment of trace copper in water samples. Important parameters, such as the sample pH, the concentration and volume of eluent, sample flow rate and volume, and interference of coexisting ions, were investigated. The obtained results indicated that proposed method possessed an excellent analytical performance. The linear range, the detection limit, and precison (RSD) were 1–100 ng/mL (R(2) = 0.9993), 0.32 ng/mL and 2.88%, respectively. The results showed that copper could be adsorbed quantitatively on the pretreated MWCNTs with potassium permanganate, and proposed method was very useful in the monitoring of copper in the environment.
基金Project supported by the National Natural Science Foundation of China(Grant No.11075099)
文摘The quantum effect of nonlinear co-tunnelling process, which is dependent on atom-pair tunneling and asymmetry of an double-well trap, is studied by using an asymmetrical extended Bose–Hubbard model. Due to the existence of atompair tunneling that describes quantum phenomena of ultracold atom-gas clouds in an asymmetrical double-well trap, the asymmetrical extended Bose–Hubbard model is better than the previous Bose–Hubbard model model by comparing with the experimental data cited from the literature. The dependence of dynamics and quantum phase transition on atom-pair tunneling and asymmetry are investigated. Importantly, it shows that the asymmetry of the extended Bose–Hubbard model,corresponding to the bias between double wells, leads to a number of resonance tunneling processes, which tunneling is renamed conditional resonance tunneling, and corrects the atom-number parity effect by controlling the bias between double wells.
基金Supported by the National Natural Science Foundation of China under Grant No 11504222
文摘The effects of non-magnetic atom vacancy on structural, martensitic phase transitions and the corresponding magnetocMoric effect in MnCoGel-x alloys are investigated using x-ray diffraction and magnetic measurements. The introduction of non-magnetic atom vacancy leads to the decrease of the martensitic transition temperature and realizes a temperature window where magnetic and martensitic phase transitions can be tuned together. Moreover, the giant magnetocaloric effect accompanied with the coupled magnetic-structural transition is ob- tained. It is observed that the peak values of magnetic entropy change of MnCoGeo.97 are about -13.9, -35.1 and -47.4J.kg-1K-1 for △H = 2, 5, 7T, respectively.
文摘The liquid phase microextraction (LPME) was combined with the modified Graphite furnace atomic absorption spectrometry (GF-AAS) for determination of lead in the water and solid samples. In a preconcentration step, lead was extracted from a 2 ml of its aqueous sample in the pH = 5 as lead-Pyrimidine-2-thiol cationic complex into a 4 μl drop of 1,2 dichloroethane and ammonium tetraphenylborate as counter ion immersed in the solution. In the drop, the lead-Pyrimidine-2-thiol ammonium tetraphenylborate ion associated complex was formed. After extraction, the microdrop was retracted and directly transferred into a graphite tube modified by [W.Pd.Mg] (c). Some effective parameters on extraction and complex formation, such as type and volume of organic solvent, pH, concentration of chelating agent and counter ion, extraction time, stirring rate and effect of salt were optimized. Under the optimum conditions, the enrichment factor and recovery were 525% and 94%, respectively. The calibration graph was linear in the range of 0.01 - 12 μg?L–1 with correlation coefficient of 0.9975 under the optimum conditions of the recommended procedure. The detection limit based on the 3Sb criterion was 0.0072 μg?L–1 and relative standard deviation (RSD) for ten replicate measurement of 0.1 μg?L–1 and 0.4 μg?L–1 lead was 4.5% and 3.8% respectively. The characteristic concentration was 0.0065 μg?L–1 equivalent to a characteristic mass of 26 fg. The results for determination of lead in reference materials, spiked tap water and seawater demonstrated the accuracy, recovery and applicability of the presented method.
基金Acknowledgment: This work was financially supported by the Natural Science Foundation of China (No. 50661001 and 50061001) and the Science Foundation of Guangxi Province (No. 0832029 and 0639004).
基金the Natural Science Foundation of the Department of Education, Guangdong Province, China (No. 02025).
文摘A new method for analysis of trace mercury in water samples was developed, based on the combination of preconcentration/separation using dithizone-modified nanometer titanium dioxide (TiO2) as a solid phase extractant and determination by cold vapor atomic adsorption spectrometry (CVAAS). Dithizone was dissolved with alcohol and loaded on the surface of nano-sized TiO2 powders by stirring. The static adsorption behavior of Hg^2+on the dithizone-modified nanoparficles was investigated in detail. It was found that excellent adsorption ratio for Hg^2+ could be obtained in the pH range of 7-8 with an oscillation time of 15 rain, and a 5 mL of 3.5 mol·L^-1 HCI solution could quantitatively elute Hg^2+ from nanometer TiO2 powder. Common coexisting ions caused no obvious influence on the determination of mercury. The mechanisms for the adsorption and desorption were discussed. The detection limit (30) for Hg^2+ was calculated to be 5 ng·L^-1. The proposed method was applied to the determination of Hg^2+ in a mineral water sample and a Zhujiang River water sample. By the standard addition method, the average recoveries were found to be 94.4%-108.3% with RSD (n = 5) of 2.9%-3.5%.
基金supported by the National Natural Science Foundation of China (Grant No 10674025)the Doctoral Foundation of the Ministry of Education of China (Grant No 20070386002)
文摘We propose a scheme for implementing conditional quantum phase gates for two four-state atoms trapped in a cavity. The two ground states of the atoms are coupled through two Raman processes induced by the cavity mode and two classical fields. Under certain conditions nonresonant Raman processes lead to two-atom coupling and can be used to produce conditional phase gates. The scheme is insensitive to cavity decay, thermal photons, and atomic spontaneous emission. The scheme does not require individual addressing of the atoms.
文摘In this paper, we present the analytical solution for the model that describes the interaction between a three-level atom and two systems of N-two level atoms. The effects of the quantum numbers and the coupling parameters between spins on the Pancharatnam phase and the atomic inversion, for some special cases of the initial states, are investigated. The comparison between the two effects shows that the analytic results are well consistent.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61875214,61535014,and 61775225)Scientific Innovation Fund of Chinese Academy of Sciences(Grant No.CXJJ-17S010)
文摘We propose a method to directly measure phase-related noise characteristics of single-frequency lasers in the 728–980 nm band based on a 120°phase difference interferometer.Differential phase information of the laser under test is demodulated via the interferometer.Other parameters related to the phase noise characteristics such as linewidth at different observation time, phase/frequency noise, power spectrum density of phase/frequency fluctuation, and Allan deviation are further obtained.Frequency noise as low as 1 Hz^2/Hz can be measured using our system.Then the phase-related noise characteristics of two commercial lasers frequently used in cold atomic clocks are studied systematically by the method.Furthermore, several influencing factors and their relative evolution laws are also revealed, such as the pump current and frequency-locking control parameters.This would help to optimize the laser performance, select laser sources, and evaluate the system performance for cold atomic physics applications.
基金Project supported by the National Basic Research Program of China (Grant No. 2006CB806000)the National Natural Science Foundation of China (Grant No. 10875072)the Open Fund of the State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics
文摘Using numerical solution of the full Maxwell-Bloch equations, which is obtained by the finite-difference time-domain method and the iterative predictor-orrector method, we investigate the modulation effect of relative carrierenvelope phase (hereinafter referred to as the relative phase) on resonant propagation of two-colour femtosecond ultrashort laser pulses in a V-type three-level atomic medium. It is found that the pulse splitting occurs for a smaller value of relative phase; when the value of relative phase increases to a certain value, only the variation of pulse shape is present and the pulse splitting does not occur any more; moreover, when the value of relative phase is smaller, the pulse group velocity is larger. The relative phase also has an obvious effect on population and spectral property. Different population transfers can be realized by adjusting the value of relative phase. Generally speaking, for the pulses with smaller areas their spectral strengths and frequency ranges decrease obviously with the value of relative phase increasing; for the pulses with larger areas, with value of the relative phase increasing, their spectral strengths decrease remarkably but the relative strengths of the higher frequency components increase significantly, while the spectral frequency range is not varied evidently.
文摘A simple and sensitive solid phase extraction utilizing C18 filled cartridges incorporated with dithizone for preconcentration of lead and its subsequent determination by flame atomic absorption spectrometry (FAAS) was developed. Several parameters such as type, concentration and volume of eluent, pH of the sample solution, flow rate of extraction and volume of the sample were evaluated. The effect of a variety of ions on preconcentration and recovery was also investigated. At pH = 7.4 and 1.0 mol?L–1 HCl eluting them, lead ions were recovered quantitatively. The limit of detection (LOD) defined as 3Sbl was determined to be 8.1 μg L–1 for 500 mL of sample solution and eluted with 5 mL of 1.0 mol?L–1 HCl under optimum conditions. The accuracy and precision (RSD %) of the method were >90% and <10%, respectively. In the end, the proposed method was applied to a number of real sugar samples and the amount of lead was determined by spiking a known concentration of lead into the solution.
文摘By means of cavity-assisted photon interference, a simple scheme is proposed to implement a symmetric economical phase-covariant quantum cloning machine of two remote qubits, with each in a separate cavity. With our present scheme, a high-fidelity cloning machine is realized. Our scheme may be quite useful in terms of distributed quantum information processing.
文摘A review of our experience in range of electron spectroscopy of the physical vapor-phase deposition and growth of single- and multilayer nanostructures with atomic scale interfaces is presented. The foundation of an innovative methodology for the combined AES-EELS analysis of layered nanostructures is developed. The methodology includes: 1) determination of the composition, thickness, and the mechanism of phase transitions in nanocoatings under the probing depth most appropriated for the range of film thickness 1 - 10 ML;2) quantitative iteration Auger-analysis of the composition, thickness and growth mechanism of nanocoating;3) structural and phase analysis of nanocoatings with use of the analysis of position, shape and energy of the plasmon EELS peak and with subtracting the contribution from the substrate;4) analysis of phase transitions with use of the shift of the plasmon Auger-satellite and 5) non-destructive profiling of the composition of nanocoatings over depth with use of a dependence of the intensity and energy of EELS peaks on the value of the primary electron energy.