The formation of macrostep during high-temperature phase of barium meta-borate (^-BaB204) single crystal growth has been investigated by both optical in-situ observation system and atomic force microscopy (AFM). T...The formation of macrostep during high-temperature phase of barium meta-borate (^-BaB204) single crystal growth has been investigated by both optical in-situ observation system and atomic force microscopy (AFM). The in- si$u observation results demonstrate that the critical linear size of growing facet exceeding the size that the macrostep generates is significantly anisotropic. The critical linear sizes are around 280 ~m and 620 ~m for {1010} and (T010} planes, respectively. AFM study illustrates that macrostep train with a height of 150 nm^200 nm is one typical morphological feature of the as-grown crystal surface. The riser of each macrostep consists of several straight and parallel sub-steps, indicating the occurrence of step bunching. Additionally, triangular sub-steps with heights of several nanometers on the treads of the macrosteps are found to be another typical feature of surface morphology, which implies a microscopically competitive bunching of sub-steps between various crystallographic orientations.展开更多
The effects of concentration and sonication on the liquid crystalline phases of collagen were investigated by several methods,especially by the atomic force microscopy(AFM).The X-ray diffraction(XRD)results revealed t...The effects of concentration and sonication on the liquid crystalline phases of collagen were investigated by several methods,especially by the atomic force microscopy(AFM).The X-ray diffraction(XRD)results revealed that the triple-helical structure of the collagen was nearly unchanged after sonication.Moreover,the differential scanning calorimetry(DSC)examinations indicated that the thermal stability of the sonicated collagen was close to that of native collagen.The AFM observations showed that collagen with a concentration of 60 mg/mL had more ordered arrays compared to that of 30 mg/mL when both samples were treated by sonication.Furthermore,the 60 mg/mL collagen solution without sonication could still form pre-cholesteric patterns,while the liquid phase could not be observed for the 30 mg/mL collagen solution under the same conditions.Generally,AFM was an effective tool for the study of the liquid crystalline phases of collagen.展开更多
We demonstrated the insitu observation of a moving atomic force microscope (AFM) cantilever using a laser confocal microscope combined with a differential interference microscope (LCM-DIM). The AFM cantilever scanned ...We demonstrated the insitu observation of a moving atomic force microscope (AFM) cantilever using a laser confocal microscope combined with a differential interference microscope (LCM-DIM). The AFM cantilever scanned or indented the {110} surface of a hen egg-white lysozyme crystal in a supersaturated solution. Using a soft cantilever, we could observe the step growth with high time resolution by LCM-DIM and perform quantitative measurements of the step height by AFM simultaneously. In addition, a hard cantilever was used with LCM-DIM to observe the dynamics of crystal surface scratching and indentation. In the supersaturated solution, the small steps generated from the scratched line aggregated to macro steps, and subsequently flattened the surface.展开更多
By using scanning polarization force microscopy,the deliquescence process and the atomic steps on the cleavage surface of CaCO3 in air were studied in situ.Under an exposure to medium umidity(-57%),the sloiw step move...By using scanning polarization force microscopy,the deliquescence process and the atomic steps on the cleavage surface of CaCO3 in air were studied in situ.Under an exposure to medium umidity(-57%),the sloiw step movement has been observed.展开更多
Crystal growth processes of poly(ethylene oxide) were followed from the original nucleation sites by using atomic force microscopy. Two distinct quasi-2-dimensional crystals about 4 nm thick were obtained from as-sp...Crystal growth processes of poly(ethylene oxide) were followed from the original nucleation sites by using atomic force microscopy. Two distinct quasi-2-dimensional crystals about 4 nm thick were obtained from as-spun polymer ultrathin films: fibrous crystals, generated by the sheafing field via spin-coating, coexist with con- ventional dendrites. The growth of the two structures is dominated by diffusion limited aggregation, though the growth rate of the fibrous crystals is around one order of magnitude faster than that of the dendrites. The fibrous crystals are more stable than the dendritic ones.展开更多
Investigation on the folding mode of a single polymer chain in its crystal is significant to the understanding of the mechanism of the fundamental crystallization as well as the engineering of new polymer crystal-base...Investigation on the folding mode of a single polymer chain in its crystal is significant to the understanding of the mechanism of the fundamental crystallization as well as the engineering of new polymer crystal-based materials. Herein, we use the combined techniques of atomic force microscopy (AFM) imaging and force spectroscopy to pull a single polyethylene oxide (PEO) chain out of its spiral crystal in amyl acetate. From these data, the folding mode of polymer chains in the spiral crystal has been reconstructed. We find that the stems tilt in the typical flat area, leading to the decrease in the apparent lamellar height. While in the area of screw dislocation, the lamellar height gradually increases in the range of several nanometers. These results indicate that the combined techniques present a novel tool to directly unravel the chain folding mode of spiral crystals at single-molecule level.展开更多
The object is to investigate the wear of an atomic force microscope (AFM) diamond tip when conducting micro/nano machining on single crystal silicon surface. The experimental research and theoretical analysis were car...The object is to investigate the wear of an atomic force microscope (AFM) diamond tip when conducting micro/nano machining on single crystal silicon surface. The experimental research and theoretical analysis were carried out on the worn tip in terms of wear rate, wear mechanism and the effect of the tip wear on micro machining process. The wear rate was calculated as 1.7(10~10mm 3/(N·m) by using a theoretical model combined with the experimental results. Through an integration of an AFM observation on the worn tip features with the FEM simulation of the stress distribution, in addition to the unit cutting force calculation on the AFM diamond tip, the wear mechanism of the AFM diamond tip was concluded as mainly chemical wear, and the wear process was also elaborated as well.展开更多
Aroma volatilization is one of the very important attributes of agricultural products during ripening.Ingredients of aroma compounds experience changes over products’different ripening stages.This paper aimed to deve...Aroma volatilization is one of the very important attributes of agricultural products during ripening.Ingredients of aroma compounds experience changes over products’different ripening stages.This paper aimed to develop a detection system based on modified quartz crystal sensors to detect volatile organic compounds(VOCs).By drop-coating on sensors’surface,four sensors were made using quartz crystal resonators coated with four different absorbable materials:ethyl cellulose,cellulose acetate,1,2-dioleoyl-sn-glycero-3-[phosphor-L-serine],and galactosyl ceramide.With the diversely coated sensors,three VOCs:isobutyl alcohol,ethyl acetate and ethylene were detected at ppm level.To investigate the structure influence of the coated sensing films on VOCs absorption,the topography of films was imaged in 3D using atomic force microscopy(AFM)in tap mode for qualitative analysis of gas absorption.The selectivity and sensitivity were investigated when sensors were exposed to VOCs with increasing concentrations.The results showed that the frequency shift of sensors was linear to the concentrations of all three VOCs in the range of 5-25 ppm.With values reaching over 4.5 Hz/ppm,the sensitivity of cellulose acetate coated sensor to three VOCs was similar,higher than that of sensors with other coatings.The high sensitivity of the cellulose acetate coated sensor might be due to the film’s rough surface and porous structure.The results may help further research on detection of fruits’organic volatiles during the ripening stage.展开更多
The adsorption-desorption of silica nanoparticles(NPs) on poly(ethylene glycol)(PEG) grafted onto gold(Au) substrate was studied by quartz crystal microbalance with dissipation monitoring(QCM-D) technique. T...The adsorption-desorption of silica nanoparticles(NPs) on poly(ethylene glycol)(PEG) grafted onto gold(Au) substrate was studied by quartz crystal microbalance with dissipation monitoring(QCM-D) technique. The results of frequency and dissipation show that SiO2 NPs can be adsorbed strongly on PEG-SH brushes at pH of 9.6, and a new dense and rigid construction is formed. Adjusting the pH from 9.6 to 12.3 resulted in the desorption of si- lica NPs from the PEG brushes because of a significant weakening of the hydrogen bond between the silica NPs and PEG chains. In addition, the viscoelastic properties of the system during the adsorption-desorption process were also analyzed via the relationship between the normalized frequency(Af/n) and mass. And the corresponding atomic force microscopy(AFM) images also exhibit morphological changes during the above process, consistent with the changes in viscoelasticity.展开更多
AlN films with preferred c-axis orientation are deposited on Si substrates using the radio frequency(RF) magnetron sputtering method.The post-processing is carried out under the cooling conditions including high vacuu...AlN films with preferred c-axis orientation are deposited on Si substrates using the radio frequency(RF) magnetron sputtering method.The post-processing is carried out under the cooling conditions including high vacuum,low vacuum under deposition gas ambient and low vacuum under dynamic N2 ambient.Structures and morphologies of the films are analyzed by X-ray diffraction(XRD) and atomic force microscopy(AFM).The hardness and Young's modulus are investigated by the nanoindenter.The experimental results indicate that the(100) and(110) peak intensities decrease in the XRD spectra and the root-mean-square of roughness(Rrms) of the film decreases gradually with the increase of the cooling rate.The maximum values of the hardness and Young modulus are obtained by cooling in low vacuum under deposition gas ambient.The reason for orientation variation of the films is explained from the perspective of the Al-N bond formation.展开更多
Aim To study the relationship between the substrate temperature and the morphology and properties of GaN. Methods\ Applying the hydride chemical vapor deposition method, GaN films were deposited on different kinds of...Aim To study the relationship between the substrate temperature and the morphology and properties of GaN. Methods\ Applying the hydride chemical vapor deposition method, GaN films were deposited on different kinds of substrates, including sapphire, Si(111),Si(100),GaAs and GaP(111) both on the P face and the Ga face. The growth was performed at low temperatures of below 700℃. XRD, Hall measurement, cathodoluminescence (CL) and atomic force microscopy (AFM) were used to characterise the film properties. Results\ It was found that the temperature and the nature of substrate materials influence the layer morphology. Conclusion\ The analysis shows that no apparent relationship exists between the optical properties and layer morphology.展开更多
采用射频磁控溅射法,在室温Pt/Ti/SiO_2/Si上制备了非晶态Pb(Zr_(0.48)Ti_(0.52))O_3(PZT)薄膜,经不同温度,相同保温时间快速退火处理使其转化为多晶PZT薄膜。用XRD,AFM测定了PZT薄膜的相组分与表面结构,并利用压电响应力显微镜...采用射频磁控溅射法,在室温Pt/Ti/SiO_2/Si上制备了非晶态Pb(Zr_(0.48)Ti_(0.52))O_3(PZT)薄膜,经不同温度,相同保温时间快速退火处理使其转化为多晶PZT薄膜。用XRD,AFM测定了PZT薄膜的相组分与表面结构,并利用压电响应力显微镜(piezoresponse force microsco-py,PFM)观察了初始晶化和高度晶化样品自发极化形成的铁电畴。结果表明:PZT薄膜晶化发生在550℃,PFM可观察到自发形成的圆形铁电畴。650℃处理的样品晶化最充分并呈现出(111)择优取向,用PFM观察到该样品形成具有强烈压电信号的电畴。由此分别算得铁电相占薄膜总体积的(7.8±0.2)%和(97.3±0.2)%。PFM结合XRD,AFM的运用为寻求铁电薄膜晶化机理提供了新的途径。展开更多
随着后基因组时代的到来以及蛋白质组学研究的深入开展,研究蛋白质晶体生长成为生物化学和结构生物学领域一个广泛关注的课题。通过使用原子力显微镜(Atomic Force Microscope,简称AFM)对杜仲抗真菌蛋白(eucommia antifungal protein,简...随着后基因组时代的到来以及蛋白质组学研究的深入开展,研究蛋白质晶体生长成为生物化学和结构生物学领域一个广泛关注的课题。通过使用原子力显微镜(Atomic Force Microscope,简称AFM)对杜仲抗真菌蛋白(eucommia antifungal protein,简称EAFP)的晶体在有母液存在下原位实时动态地进行了晶面生长观察。研究结果表明:不同过饱和度对EAFP晶体生长形貌的影响较大,较高的过饱和度下生长很快,生长台阶密度高,较高的过饱和度下主要进行各向异性二维台阶的发生、发展,较低的过饱和度下主要采用螺旋位错的生长方式,当过饱和度极低时生长缓慢,且晶体表面有很多小孔存在,晶面生长很不完整;还对不同过饱和度下晶体生长速率进行了定量的测量,也反映了过饱和度对EAFP晶体生长的影响;同时对在AFM观察过程中由探针的扫描速度和方向对表面形貌的影响进行了讨论。展开更多
基金supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 50802105)
文摘The formation of macrostep during high-temperature phase of barium meta-borate (^-BaB204) single crystal growth has been investigated by both optical in-situ observation system and atomic force microscopy (AFM). The in- si$u observation results demonstrate that the critical linear size of growing facet exceeding the size that the macrostep generates is significantly anisotropic. The critical linear sizes are around 280 ~m and 620 ~m for {1010} and (T010} planes, respectively. AFM study illustrates that macrostep train with a height of 150 nm^200 nm is one typical morphological feature of the as-grown crystal surface. The riser of each macrostep consists of several straight and parallel sub-steps, indicating the occurrence of step bunching. Additionally, triangular sub-steps with heights of several nanometers on the treads of the macrosteps are found to be another typical feature of surface morphology, which implies a microscopically competitive bunching of sub-steps between various crystallographic orientations.
基金support from the National Natural Science Foundation of China (Grant No.21306024)the Natural Science Foundation of Fujian Province (Grant No.2016J01208)the Foundation of Distinguished Young Scholars of Fujian Agriculture and Forestry University (Grant No.XJQ201212).
文摘The effects of concentration and sonication on the liquid crystalline phases of collagen were investigated by several methods,especially by the atomic force microscopy(AFM).The X-ray diffraction(XRD)results revealed that the triple-helical structure of the collagen was nearly unchanged after sonication.Moreover,the differential scanning calorimetry(DSC)examinations indicated that the thermal stability of the sonicated collagen was close to that of native collagen.The AFM observations showed that collagen with a concentration of 60 mg/mL had more ordered arrays compared to that of 30 mg/mL when both samples were treated by sonication.Furthermore,the 60 mg/mL collagen solution without sonication could still form pre-cholesteric patterns,while the liquid phase could not be observed for the 30 mg/mL collagen solution under the same conditions.Generally,AFM was an effective tool for the study of the liquid crystalline phases of collagen.
文摘We demonstrated the insitu observation of a moving atomic force microscope (AFM) cantilever using a laser confocal microscope combined with a differential interference microscope (LCM-DIM). The AFM cantilever scanned or indented the {110} surface of a hen egg-white lysozyme crystal in a supersaturated solution. Using a soft cantilever, we could observe the step growth with high time resolution by LCM-DIM and perform quantitative measurements of the step height by AFM simultaneously. In addition, a hard cantilever was used with LCM-DIM to observe the dynamics of crystal surface scratching and indentation. In the supersaturated solution, the small steps generated from the scratched line aggregated to macro steps, and subsequently flattened the surface.
文摘By using scanning polarization force microscopy,the deliquescence process and the atomic steps on the cleavage surface of CaCO3 in air were studied in situ.Under an exposure to medium umidity(-57%),the sloiw step movement has been observed.
基金Supported by the National Natural Science Foundation of China(21176065,21136004)the 111 Project(B08021)the Fundamental Research Funds for the central Universities of China
文摘Crystal growth processes of poly(ethylene oxide) were followed from the original nucleation sites by using atomic force microscopy. Two distinct quasi-2-dimensional crystals about 4 nm thick were obtained from as-spun polymer ultrathin films: fibrous crystals, generated by the sheafing field via spin-coating, coexist with con- ventional dendrites. The growth of the two structures is dominated by diffusion limited aggregation, though the growth rate of the fibrous crystals is around one order of magnitude faster than that of the dendrites. The fibrous crystals are more stable than the dendritic ones.
基金financially supported by the National Natural Science Foundation of China(Nos.20974039,21221063 and 91127031)the National Basic Research Program(2013CB834503)the Program for New Century Excellent Talents in Universities(NCET-11-0205)
文摘Investigation on the folding mode of a single polymer chain in its crystal is significant to the understanding of the mechanism of the fundamental crystallization as well as the engineering of new polymer crystal-based materials. Herein, we use the combined techniques of atomic force microscopy (AFM) imaging and force spectroscopy to pull a single polyethylene oxide (PEO) chain out of its spiral crystal in amyl acetate. From these data, the folding mode of polymer chains in the spiral crystal has been reconstructed. We find that the stems tilt in the typical flat area, leading to the decrease in the apparent lamellar height. While in the area of screw dislocation, the lamellar height gradually increases in the range of several nanometers. These results indicate that the combined techniques present a novel tool to directly unravel the chain folding mode of spiral crystals at single-molecule level.
文摘The object is to investigate the wear of an atomic force microscope (AFM) diamond tip when conducting micro/nano machining on single crystal silicon surface. The experimental research and theoretical analysis were carried out on the worn tip in terms of wear rate, wear mechanism and the effect of the tip wear on micro machining process. The wear rate was calculated as 1.7(10~10mm 3/(N·m) by using a theoretical model combined with the experimental results. Through an integration of an AFM observation on the worn tip features with the FEM simulation of the stress distribution, in addition to the unit cutting force calculation on the AFM diamond tip, the wear mechanism of the AFM diamond tip was concluded as mainly chemical wear, and the wear process was also elaborated as well.
文摘Aroma volatilization is one of the very important attributes of agricultural products during ripening.Ingredients of aroma compounds experience changes over products’different ripening stages.This paper aimed to develop a detection system based on modified quartz crystal sensors to detect volatile organic compounds(VOCs).By drop-coating on sensors’surface,four sensors were made using quartz crystal resonators coated with four different absorbable materials:ethyl cellulose,cellulose acetate,1,2-dioleoyl-sn-glycero-3-[phosphor-L-serine],and galactosyl ceramide.With the diversely coated sensors,three VOCs:isobutyl alcohol,ethyl acetate and ethylene were detected at ppm level.To investigate the structure influence of the coated sensing films on VOCs absorption,the topography of films was imaged in 3D using atomic force microscopy(AFM)in tap mode for qualitative analysis of gas absorption.The selectivity and sensitivity were investigated when sensors were exposed to VOCs with increasing concentrations.The results showed that the frequency shift of sensors was linear to the concentrations of all three VOCs in the range of 5-25 ppm.With values reaching over 4.5 Hz/ppm,the sensitivity of cellulose acetate coated sensor to three VOCs was similar,higher than that of sensors with other coatings.The high sensitivity of the cellulose acetate coated sensor might be due to the film’s rough surface and porous structure.The results may help further research on detection of fruits’organic volatiles during the ripening stage.
基金Supported by the National Natural Science Foundation of China(Nos.50621302, 50921062).
文摘The adsorption-desorption of silica nanoparticles(NPs) on poly(ethylene glycol)(PEG) grafted onto gold(Au) substrate was studied by quartz crystal microbalance with dissipation monitoring(QCM-D) technique. The results of frequency and dissipation show that SiO2 NPs can be adsorbed strongly on PEG-SH brushes at pH of 9.6, and a new dense and rigid construction is formed. Adjusting the pH from 9.6 to 12.3 resulted in the desorption of si- lica NPs from the PEG brushes because of a significant weakening of the hydrogen bond between the silica NPs and PEG chains. In addition, the viscoelastic properties of the system during the adsorption-desorption process were also analyzed via the relationship between the normalized frequency(Af/n) and mass. And the corresponding atomic force microscopy(AFM) images also exhibit morphological changes during the above process, consistent with the changes in viscoelasticity.
基金supported by the National Natural Science Foundation of China (No.50972105)Tianjin Natural Science Foundation (Nos.09JCZDJC16500,08JCZDJC22700 and 10SYSYJC27700)
文摘AlN films with preferred c-axis orientation are deposited on Si substrates using the radio frequency(RF) magnetron sputtering method.The post-processing is carried out under the cooling conditions including high vacuum,low vacuum under deposition gas ambient and low vacuum under dynamic N2 ambient.Structures and morphologies of the films are analyzed by X-ray diffraction(XRD) and atomic force microscopy(AFM).The hardness and Young's modulus are investigated by the nanoindenter.The experimental results indicate that the(100) and(110) peak intensities decrease in the XRD spectra and the root-mean-square of roughness(Rrms) of the film decreases gradually with the increase of the cooling rate.The maximum values of the hardness and Young modulus are obtained by cooling in low vacuum under deposition gas ambient.The reason for orientation variation of the films is explained from the perspective of the Al-N bond formation.
文摘Aim To study the relationship between the substrate temperature and the morphology and properties of GaN. Methods\ Applying the hydride chemical vapor deposition method, GaN films were deposited on different kinds of substrates, including sapphire, Si(111),Si(100),GaAs and GaP(111) both on the P face and the Ga face. The growth was performed at low temperatures of below 700℃. XRD, Hall measurement, cathodoluminescence (CL) and atomic force microscopy (AFM) were used to characterise the film properties. Results\ It was found that the temperature and the nature of substrate materials influence the layer morphology. Conclusion\ The analysis shows that no apparent relationship exists between the optical properties and layer morphology.
文摘采用射频磁控溅射法,在室温Pt/Ti/SiO_2/Si上制备了非晶态Pb(Zr_(0.48)Ti_(0.52))O_3(PZT)薄膜,经不同温度,相同保温时间快速退火处理使其转化为多晶PZT薄膜。用XRD,AFM测定了PZT薄膜的相组分与表面结构,并利用压电响应力显微镜(piezoresponse force microsco-py,PFM)观察了初始晶化和高度晶化样品自发极化形成的铁电畴。结果表明:PZT薄膜晶化发生在550℃,PFM可观察到自发形成的圆形铁电畴。650℃处理的样品晶化最充分并呈现出(111)择优取向,用PFM观察到该样品形成具有强烈压电信号的电畴。由此分别算得铁电相占薄膜总体积的(7.8±0.2)%和(97.3±0.2)%。PFM结合XRD,AFM的运用为寻求铁电薄膜晶化机理提供了新的途径。
文摘随着后基因组时代的到来以及蛋白质组学研究的深入开展,研究蛋白质晶体生长成为生物化学和结构生物学领域一个广泛关注的课题。通过使用原子力显微镜(Atomic Force Microscope,简称AFM)对杜仲抗真菌蛋白(eucommia antifungal protein,简称EAFP)的晶体在有母液存在下原位实时动态地进行了晶面生长观察。研究结果表明:不同过饱和度对EAFP晶体生长形貌的影响较大,较高的过饱和度下生长很快,生长台阶密度高,较高的过饱和度下主要进行各向异性二维台阶的发生、发展,较低的过饱和度下主要采用螺旋位错的生长方式,当过饱和度极低时生长缓慢,且晶体表面有很多小孔存在,晶面生长很不完整;还对不同过饱和度下晶体生长速率进行了定量的测量,也反映了过饱和度对EAFP晶体生长的影响;同时对在AFM观察过程中由探针的扫描速度和方向对表面形貌的影响进行了讨论。