期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Molecular Structure of Atomic Nucleus
1
作者 Vu B. Ho 《Journal of Modern Physics》 2020年第9期1395-1409,共15页
<p align="justify"> <span style="font-family:Verdana;"><span style="font-family:Verdana;font-size:12px;">In this work, we extend our work on the Heisenberg model of the ... <p align="justify"> <span style="font-family:Verdana;"><span style="font-family:Verdana;font-size:12px;">In this work, we extend our work on the Heisenberg model of the neutron formulated as a dwarf hydrogen-like atom under the influence of the More General Exponential Screened Coulomb Potential (MGESCP) to show that an atomic nucleus may possess a molecular structure made up of atoms bonding together by a potential used to describe the strong force associated with a generalised Yukawa MGESCP potential. We show that the neutrons and protons are arranged into narrow lattices therefore they may fold to form three-dimensional shells by bonding similar to hydrogen bonding. In particular, the nucleons may form stable structures such as that of fullerenes in which the vertices are occupied by the nucleons which are simply just protons. For example, a nucleus with a total number of 60 nucleons may arrange itself into the topological structure of a buckminsterfullerene. We also apply </span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;font-size:12px;">Schr</span></span><span style="font-family:;"><span style="font-family:;font-size:12px;"></span><span style="text-align:left;widows:2;text-transform:none;background-color:#ffffff;font-style:normal;text-indent:0px;display:inline !important;font-family:Verdana;white-space:normal;orphans:2;float:none;letter-spacing:normal;font-size:12px;font-weight:400;word-spacing:0px;font-variant-ligatures:normal;font-variant-caps:normal;-webkit-text-stroke-width:0px;text-decoration-style:initial;text-decoration-color:initial;">ö</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;font-size:12px;">dinger</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;font-size:12px;"> wave equation with central field approximation to describe the quantum dynamics of nuclei of atomic atoms that now possess the physical structure of a dwarf molecular ion.</span></span> </p> 展开更多
关键词 Heisenberg Model of the Neutron Dwarf Hydrogen Atom Molecular Structure of atomic nucleus Weak and Strong Interactions Yukawa MGESCP Potential FULLERENE
下载PDF
Prediction of Radioactive Half-Lives and Atomic Nucleus Dimensions in a Concentric Shell Model or Flocon Model
2
作者 Marc Mignonat 《Journal of Modern Physics》 CAS 2022年第8期1216-1251,共36页
Considering only the wave aspect, we determine the energy of a bond between 2 nucleons;this quantified energy is associated with a standing wave. Then, starting from the mass loss corresponding to this energy, we dete... Considering only the wave aspect, we determine the energy of a bond between 2 nucleons;this quantified energy is associated with a standing wave. Then, starting from the mass loss corresponding to this energy, we determine the number of bonds in this nucleus. The mass defect value for a link is used to determine a specific length at that link. Fixing a precise distance between nucleons makes it possible to determine a geometry of the nucleus and its dimensions. It makes it possible to understand when this bond is stronger than the electrostatic force and allows deducing a shell model built in a precise order. The calculation on the mass defect will also make it possible to determine that one or more nucleons concerned by the radioactivity will be bound by a single bond to the rest of the nucleus or, on the contrary, bound by several bonds which induce short 1/2 lives or, on the contrary, very long. The analysis of the bonds on H, He and C make it possible to write formulae which are then applied to the nuclei to find the radioactive 1/2 lives. To find by equations the radioactive 1/2 lives does not call into question the standard model since it concerns only the defect of mass of the nuclei with energies that are not used to find the main particles of the standard model. This model, which favours a geometric approach to the detriment of a mathematical approach based on differential equations, can lead to theoretical questions about the possibility of interpreting the structure of the nucleus in a more undulatory way. It is possible to explain radioactivity in a more deterministic way. 展开更多
关键词 ½ Radioactive Lives atomic nucleus Dimensions Shell Model
下载PDF
Manifestation of Color Confinement in the YY Model for Atomic Nuclei
3
作者 Hongguang Yang Weidong Yang 《Journal of Modern Physics》 2020年第12期1999-2010,共12页
In this paper, a manifestation of the well-known color confinement from the QCD (quantum chromodynamics) in the newly developed YY model for the atomic nucleus is presented. There is a wonderful correspondence between... In this paper, a manifestation of the well-known color confinement from the QCD (quantum chromodynamics) in the newly developed YY model for the atomic nucleus is presented. There is a wonderful correspondence between the structural requirements from the YY model and some elementary properties of the color dynamics from QCD. The open questions in the YY model, namely the holding forces for triple nodes and for pairing space links, are exactly covered by the three-color compensation or by the paired color anti-color balance. We will see what colors and anti-colors do mean in the YY model, how up quarks and down quarks get assigned a color or anti-color. We will discover some relationships between gluon-based interactions as described in the standard model and pairing space links in the YY model. 展开更多
关键词 Quantum Chromodynamics QCD Color Confinement YY Model for atomic nucleus Pairing Space Link PSL Triple Space Link TSL Colored up Quark Colored Down Quark Colored Hydrogen nucleus Colored Helium nucleus Colored Helium Isotope nucleus Color Confinement Aggregate State CCAS Color-Balanced PSL Tumbling of Colored PSLs
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部