We theoretically investigate the excited state intramolecular proton transfer(ESIPT) behavior of the novel fluorophore bis-imine derivative molecule HNP which was designed based on the intersection of 1-(hydrazonometh...We theoretically investigate the excited state intramolecular proton transfer(ESIPT) behavior of the novel fluorophore bis-imine derivative molecule HNP which was designed based on the intersection of 1-(hydrazonomethyl)-naphthalene-2-ol and 1-pyrenecarboxaldehyde. Especially, the density functional theory(DFT) and time-dependent density functional theory(TDDFT) methods for HNP monomer are introduced. Moreover, the "our own n-layered integrated molecular orbital and molecular mechanics"(ONIOM) method(TDDFT:universal force field(UFF)) is used to reveal the aggregation-induced emission(AIE) effect on the ESIPT process for HNP in crystal. Our results confirm that the ESIPT process happens upon the photoexcitation for the HNP monomer and HNP in crystal, which is distinctly monitored by the optimized geometric structures and the potential energy curves. In addition, the results of potential energy curves reveal that the ESIPT process in HNP will be promoted by the AIE effect. Furthermore, the highest occupied molecular orbital(HOMO) and lowest unoccupied molecular orbital(LUMO) for the HNP monomer and HNP in crystal have been calculated. The calculation demonstrates that the electron density decrease of proton donor caused by excitation promotes the ESIPT process. In addition, we find that the variation of atomic dipole moment corrected Hirshfeld population(ADCH) charge for proton acceptor induced by the AIE effect facilitates the ESIPT process. The results will be expected to deepen the understanding of ESIPT dynamics for luminophore under the AIE effect and provide insight into future design of high-efficient AIE compounds.展开更多
The semiclassical non-perturbative atomic orbital close-coupling approach has been employed to study the electron capture and excitation processes in He^(2+)-H(1s)and He^(2+)-H(2s)collision systems.In order to ensure ...The semiclassical non-perturbative atomic orbital close-coupling approach has been employed to study the electron capture and excitation processes in He^(2+)-H(1s)and He^(2+)-H(2s)collision systems.In order to ensure the accuracy of our calculated cross sections,a large number of high excited states and pseudostates are included in the expansion basis sets which are centered on the target and projectile,respectively.The total and partial charge transfer and excitation cross sections are obtained for a wide-energy domain ranging from 1 keV/amu to 200 keV/amu.The present calculations are also compared with the results from other theoretical methods.These cross section data are useful for the investigation of astrophysics and laboratory plasma.展开更多
The electron excitation processes of H(1s)+He(1s^(2))→H(2s/2p)+He(1s^(2))are studied in impact energy range of 20-2000 e V/u by using the quantum-mechanical molecular orbital close-coupling(QMOCC)method.Total and sta...The electron excitation processes of H(1s)+He(1s^(2))→H(2s/2p)+He(1s^(2))are studied in impact energy range of 20-2000 e V/u by using the quantum-mechanical molecular orbital close-coupling(QMOCC)method.Total and state-selective cross sections have been obtained and compared with the available theoretical and experimental results.The results agree well with available measurements in the overlapping energy regions overall.The comparison of our results with other theoretical calculations further demonstrates the importance of considering a sufficient number of channels.The datasets presented in this paper,including the excitation cross sections,are openly available at https://www.doi.org/10.57760/sciencedb.j00113.00083.展开更多
采用单电子的双中心原子轨道强耦合方法,研究了1-100 ke VH(1s)+H(1s)碰撞体系的激发、俘获和失去电子总截面,并分别与前人的理论结果和实验结果进行了比较.研究表明,采用双中心原子轨道强耦合方法得到的H(1s)+H(1s)体系激发到H(2s)过...采用单电子的双中心原子轨道强耦合方法,研究了1-100 ke VH(1s)+H(1s)碰撞体系的激发、俘获和失去电子总截面,并分别与前人的理论结果和实验结果进行了比较.研究表明,采用双中心原子轨道强耦合方法得到的H(1s)+H(1s)体系激发到H(2s)过程和失去电子过程的截面与实验符合很好.展开更多
The electron capture in N^(5+)-H collisions imbedded in a Debye plasma is studied by using the two-center atomic orbital close-coupling method in the energy range from 1 keV/u to 200 keV/u.The atomic orbitals and elec...The electron capture in N^(5+)-H collisions imbedded in a Debye plasma is studied by using the two-center atomic orbital close-coupling method in the energy range from 1 keV/u to 200 keV/u.The atomic orbitals and electron binding energies of atomic states are calculated within the Debye-Huckel approximation of the screened Coulomb potential and used in atomic orbital close-coupling dynamics formalism to calculate the electron capture cross sections.The electron capture cross sections and the charge transfer spectral lines of N^(4+)(1s^(2)nl)for a number of representative screening parameter values are presented and discussed.It is found that the screening of Coulomb interactions affects the entire collision dynamics and the magnitude and energy behavior of state-selective cross sections.The changes in electron binding energies and capture cross sections when the interaction screening varies introduce dramatic changes in the radiation spectrum of N^(4+)(1s^(2)nl)capture states with respect to the unscreened interaction case.展开更多
We report results from ab-initio, self-consistent density functional theory (DFT) calculations of electronic, transport and bulk properties of rock salt magnesium sulfide (MgS). In the absence of experimental data on ...We report results from ab-initio, self-consistent density functional theory (DFT) calculations of electronic, transport and bulk properties of rock salt magnesium sulfide (MgS). In the absence of experimental data on these properties, except for the bulk modulus, these results are predictions. Our calculations utilized the Ceperley and Alder local density approximation (LDA) potential and the linear combination of Gaussian orbitals (LCGO). The key difference between our computations and other previous ab-initio DFT ones stems from our use of successively larger basis sets, in consecutive, self-consistent calculations, to attain the ground state of the material. We predicted an indirect (Γ-X) band gap of 3.278 eV for a room temperature lattice constant of 5.200Å. We obtained a predicted low temperature indirect (Γ-X) band gap of 3.512 eV, using the equilibrium lattice constant of 5.183Å. We found a theoretical value of 79.76 GPa for the bulk modulus;it agrees very well with the experimental finding of 78 ±3.7 GPa.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11574115 and 11704146)
文摘We theoretically investigate the excited state intramolecular proton transfer(ESIPT) behavior of the novel fluorophore bis-imine derivative molecule HNP which was designed based on the intersection of 1-(hydrazonomethyl)-naphthalene-2-ol and 1-pyrenecarboxaldehyde. Especially, the density functional theory(DFT) and time-dependent density functional theory(TDDFT) methods for HNP monomer are introduced. Moreover, the "our own n-layered integrated molecular orbital and molecular mechanics"(ONIOM) method(TDDFT:universal force field(UFF)) is used to reveal the aggregation-induced emission(AIE) effect on the ESIPT process for HNP in crystal. Our results confirm that the ESIPT process happens upon the photoexcitation for the HNP monomer and HNP in crystal, which is distinctly monitored by the optimized geometric structures and the potential energy curves. In addition, the results of potential energy curves reveal that the ESIPT process in HNP will be promoted by the AIE effect. Furthermore, the highest occupied molecular orbital(HOMO) and lowest unoccupied molecular orbital(LUMO) for the HNP monomer and HNP in crystal have been calculated. The calculation demonstrates that the electron density decrease of proton donor caused by excitation promotes the ESIPT process. In addition, we find that the variation of atomic dipole moment corrected Hirshfeld population(ADCH) charge for proton acceptor induced by the AIE effect facilitates the ESIPT process. The results will be expected to deepen the understanding of ESIPT dynamics for luminophore under the AIE effect and provide insight into future design of high-efficient AIE compounds.
基金supported by the National Key Research and Development Program of China (Grant No.2022YFA 1602500)the National Natural Science Foundation of China (Grant Nos.11934004 and 12241410).
文摘The semiclassical non-perturbative atomic orbital close-coupling approach has been employed to study the electron capture and excitation processes in He^(2+)-H(1s)and He^(2+)-H(2s)collision systems.In order to ensure the accuracy of our calculated cross sections,a large number of high excited states and pseudostates are included in the expansion basis sets which are centered on the target and projectile,respectively.The total and partial charge transfer and excitation cross sections are obtained for a wide-energy domain ranging from 1 keV/amu to 200 keV/amu.The present calculations are also compared with the results from other theoretical methods.These cross section data are useful for the investigation of astrophysics and laboratory plasma.
基金supported by the National Natural Science Foundation of China(Grant Nos.12204288,11934004,and 12274040)
文摘The electron excitation processes of H(1s)+He(1s^(2))→H(2s/2p)+He(1s^(2))are studied in impact energy range of 20-2000 e V/u by using the quantum-mechanical molecular orbital close-coupling(QMOCC)method.Total and state-selective cross sections have been obtained and compared with the available theoretical and experimental results.The results agree well with available measurements in the overlapping energy regions overall.The comparison of our results with other theoretical calculations further demonstrates the importance of considering a sufficient number of channels.The datasets presented in this paper,including the excitation cross sections,are openly available at https://www.doi.org/10.57760/sciencedb.j00113.00083.
基金supported by the National Basic Research Program of China(Grant No.2013CB922200)by the National Natural Science Foundation of China(Grant Nos.11204017,11474033 and 11474032)by the foundation for the development of Science and Technology of China Academy of Engineering Physics(Grant No.2013A0102005).
文摘The electron capture in N^(5+)-H collisions imbedded in a Debye plasma is studied by using the two-center atomic orbital close-coupling method in the energy range from 1 keV/u to 200 keV/u.The atomic orbitals and electron binding energies of atomic states are calculated within the Debye-Huckel approximation of the screened Coulomb potential and used in atomic orbital close-coupling dynamics formalism to calculate the electron capture cross sections.The electron capture cross sections and the charge transfer spectral lines of N^(4+)(1s^(2)nl)for a number of representative screening parameter values are presented and discussed.It is found that the screening of Coulomb interactions affects the entire collision dynamics and the magnitude and energy behavior of state-selective cross sections.The changes in electron binding energies and capture cross sections when the interaction screening varies introduce dramatic changes in the radiation spectrum of N^(4+)(1s^(2)nl)capture states with respect to the unscreened interaction case.
文摘We report results from ab-initio, self-consistent density functional theory (DFT) calculations of electronic, transport and bulk properties of rock salt magnesium sulfide (MgS). In the absence of experimental data on these properties, except for the bulk modulus, these results are predictions. Our calculations utilized the Ceperley and Alder local density approximation (LDA) potential and the linear combination of Gaussian orbitals (LCGO). The key difference between our computations and other previous ab-initio DFT ones stems from our use of successively larger basis sets, in consecutive, self-consistent calculations, to attain the ground state of the material. We predicted an indirect (Γ-X) band gap of 3.278 eV for a room temperature lattice constant of 5.200Å. We obtained a predicted low temperature indirect (Γ-X) band gap of 3.512 eV, using the equilibrium lattice constant of 5.183Å. We found a theoretical value of 79.76 GPa for the bulk modulus;it agrees very well with the experimental finding of 78 ±3.7 GPa.