The desert plant Rhazya stricta has anticancer and antimicrobial properties, and is widely used in indigenous medicines of Saudi Arabia. However, the therapeutic benefits rely on an accurate identification of this spe...The desert plant Rhazya stricta has anticancer and antimicrobial properties, and is widely used in indigenous medicines of Saudi Arabia. However, the therapeutic benefits rely on an accurate identification of this species. The authenticity of R. stricta and other medicinal plants and herbs procured from local markets can be questionable due to a lack of clear phenotypic traits. DNA barcoding is an emerging technology for rapid and accurate species identification. In this study, six candidate chloroplastid barcodes were investigated for the authentication of R. stricta. We compared the DNA sequences from fifty locally collected and five market samples of R. stricta with database sequences of R. stricta and seven closely related species. We found that the coding regions matK, rbcL, rpoB, and rpoC1 were highly similar among the taxa. By contrast, the intergenic spacers psbK-psbI and atpF-atpH were variable loci distinct for the medicinal plant R. stricta. psbK-psbI clearly discriminated R. stricta samples as an efficient single locus marker, whereas a two-locus marker combination comprising psbK-psbI + atpF-atpH was also promising according to results from the Basic Local Alignment Search Tool and a maximum likelihood gene tree generated using PHyML. Two-dimensional DNA barcodes (i.e., QR codes) for the psbK-psbI and psbK-psbI + atpF-atpH regions were created for the validation of fresh or dried R. stricta samples.展开更多
文摘The desert plant Rhazya stricta has anticancer and antimicrobial properties, and is widely used in indigenous medicines of Saudi Arabia. However, the therapeutic benefits rely on an accurate identification of this species. The authenticity of R. stricta and other medicinal plants and herbs procured from local markets can be questionable due to a lack of clear phenotypic traits. DNA barcoding is an emerging technology for rapid and accurate species identification. In this study, six candidate chloroplastid barcodes were investigated for the authentication of R. stricta. We compared the DNA sequences from fifty locally collected and five market samples of R. stricta with database sequences of R. stricta and seven closely related species. We found that the coding regions matK, rbcL, rpoB, and rpoC1 were highly similar among the taxa. By contrast, the intergenic spacers psbK-psbI and atpF-atpH were variable loci distinct for the medicinal plant R. stricta. psbK-psbI clearly discriminated R. stricta samples as an efficient single locus marker, whereas a two-locus marker combination comprising psbK-psbI + atpF-atpH was also promising according to results from the Basic Local Alignment Search Tool and a maximum likelihood gene tree generated using PHyML. Two-dimensional DNA barcodes (i.e., QR codes) for the psbK-psbI and psbK-psbI + atpF-atpH regions were created for the validation of fresh or dried R. stricta samples.