期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Memory Improvement by Yokukansankachimpihange and Atractylenolide III in the Olfactory Bulbectomized Mice 被引量:1
1
作者 Hisanao Izumi Yuzuru Sasaki +4 位作者 Yasushi Yabuki Yasuharu Shinoda Nina Fujita Satoshi Yomoda Kohji Fukunaga 《Advances in Alzheimer's Disease》 2016年第2期35-45,共11页
Alzheimer’s Disease (AD) shows cognitive dysfunction as core symptoms and Behavioral and Psychological Symptoms of Dementia (BPSD). Since acetylcholine nerve system derived from septum is collapsed in the AD patients... Alzheimer’s Disease (AD) shows cognitive dysfunction as core symptoms and Behavioral and Psychological Symptoms of Dementia (BPSD). Since acetylcholine nerve system derived from septum is collapsed in the AD patients, we have used Olfactory Bulbectomized (OBX) mice whose cholinergic system is largely impaired in the septum. Recently, Yokukansankachimpihange (YKH), a traditional Japanese Kampo medicine has used for BPSD in addition to improve cognitive dysfunction in AD patients. However the essential components for cognition and BPSD improvement and their mechanism are largely unknown. In present study, we found that Atractylenolide III (Aen-III), one of the components of YKH, improved cognitive deficits and depression in the OBX mice. OBX mice were orally administered with Aen-III (1.0 and 3.0 mg/kg) and YKH extracts daily for 18 days. Like YKH extracts, the Aen-III treatments ameliorated cognitive deficits and depression-like behavior observed in OBX mice. Importantly, Aen-III administration significantly restored the decreases in Ca2+/calmodulin-dependent protein kinase II (CaMKII) autophosphorylation and phosphorylation of Ca2+/calmodulin-dependent protein kinase IV (CaMKIV) and cyclic AMP response element binding protein (CREB). The restoration of CaMKII and CaMKIV signaling is closely related to the increased BDNF levels. Furthermore, ATP reduction in OBX mice was rescued by Aen-III (3.0 mg/kg) and YKH (1000 mg/kg) treatment. In summary, Aen-III as a component of YKH ameliorates cognitive dysfunctions and depression via restoring CaMKII and CaMKIV signaling. 展开更多
关键词 Yokukansankachimpihange atractylenolide iii Olfactory Bulbectomized Mice CAMKII BDNF
下载PDF
Effect of atractylenolide Ⅲ on zearalenone-induced Snail1-mediated epithelial–mesenchymal transition in porcine intestinal epithelium
2
作者 Na Yeon Kim Myoung Ok Kim +4 位作者 Sangsu Shin Woo‑Sung Kwon Bomi Kim Joon Yeop Lee Sang In Lee 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第5期2081-2092,共12页
Background The intestinal epithelium performs essential physiological functions,such as nutrient absorption,and acts as a barrier to prevent the entry of harmful substances.Mycotoxins are prevalent contaminants found ... Background The intestinal epithelium performs essential physiological functions,such as nutrient absorption,and acts as a barrier to prevent the entry of harmful substances.Mycotoxins are prevalent contaminants found in ani-mal feed that exert harmful effects on the health of livestock.Zearalenone(ZEA)is produced by the Fusarium genus and induces gastrointestinal dysfunction and disrupts the health and immune system of animals.Here,we evaluated the molecular mechanisms that regulate the effects of ZEA on the porcine intestinal epithelium.Results Treatment of IPEC-J2 cells with ZEA decreased the expression of E-cadherin and increased the expression of Snai1 and Vimentin,which induced Snail1-mediated epithelial-to-mesenchymal transition(EMT).In addition,ZEA induces Snail-mediated EMT through the activation of TGF-βsignaling.The treatment of IPEC-J2 cells with atractyle-nolideⅢ,which were exposed to ZEA,alleviated EMT.Conclusions Our findings provide insights into the molecular mechanisms of ZEA toxicity in porcine intestinal epi-thelial cells and ways to mitigate it. 展开更多
关键词 atractylenolide iii Epithelial–mesenchymal transition IPEC-J2 cells SNAIL TGF-beta signaling ZEARALENONE
下载PDF
Inhibition of ASCT2 induces hepatic stellate cell senescence with modified proinflammatory secretome through an IL-1α/NF-κB feedback pathway to inhibit liver fibrosis 被引量:7
3
作者 Feixia Wang Zhanghao Li +10 位作者 Li Chen Ting Yang Baoyu Liang Zili Zhang Jiangjuan Shao Xuefen Xu Guoping Yin Shijun Wang Hai Ding Feng Zhang Shizhong Zheng 《Acta Pharmaceutica Sinica B》 SCIE CAS CSCD 2022年第9期3618-3638,共21页
Senescence of activated hepatic stellate cells(aHSCs) is a stable growth arrest that is implicated in liver fibrosis regression.Senescent cells often accompanied by a multi-faceted senescence-associated secretory phen... Senescence of activated hepatic stellate cells(aHSCs) is a stable growth arrest that is implicated in liver fibrosis regression.Senescent cells often accompanied by a multi-faceted senescence-associated secretory phenotype(SASP).But little is known about how alanine-serine-cysteine transporter type-2(ASCT2),a high affinity glutamine transporter,affects HSC senescence and SASP during liver fibrosis.Here,we identified ASCT2 is mainly elevated in aHSCs and positively correlated with liver fibrosis in human and mouse fibrotic livers.We first discovered ASCT2 inhibition induced HSCs to senescence in vitro and in vivo.The proinflammatory SASP were restricted by ASCT2 inhibition at senescence initiation to prevent paracrine migration.Mechanically,ASCT2 was a direct target of glutaminolysisdependent proinflammatory SASP,interfering IL-1α/NF-κB feedback loop via interacting with precursor IL-1α at Lys82.From a translational perspective,atractylenolide Ⅲ is identified as ASCT2 inhibitor through directly bound to Asn230 of ASCT2.The presence of -OH group in atractylenolide Ⅲ is suggested to be favorable for the inhibition of ASCT2.Importantly,atractylenolide Ⅲ could be utilized to treat liver fibrosis mice.Taken together,ASCT2 controlled HSC senescence while modifying the proinflammatory SASP.Targeting ASCT2 by atractylenolide Ⅲ could be a therapeutic candidate for liver fibrosis. 展开更多
关键词 Hepatic stellate cells SENESCENCE SASP ASCT2 Precursor IL-1α NF-ΚB atractylenolide iii Liver fibrosis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部