The purpose of the present study was to study the impacts of eplerenone (EPL), an antagonist of mineralocorticoid receptors (MR), on atrial fibrosis in a mouse model with selective fibrosis in the atrium, and to e...The purpose of the present study was to study the impacts of eplerenone (EPL), an antagonist of mineralocorticoid receptors (MR), on atrial fibrosis in a mouse model with selective fibrosis in the atrium, and to explore the possible mechanisms. Using mutant TGF-β1 transgenic (Tx) mice, we first demonstrated that EPL inhibited atrial fibrosis specifically and decreased mac- rophage accumulation in the atria of these mice. Results from immunohistochemistry and western blotting showed that EPL attenuated protein expression of fibrosis-related molecules such as connective tissue growth factor (CTGF) and fibronectin in the atria of Tx mice. In culture, EPL inhibited gene expression of fibrosis-related molecules such as fibronectin, ct-SMA, and CTGF in TGF-β1-stimulated atrial fibroblasts, Finally, using a co-culture system, we showed that TGF-β1 stimulated atrial fi- broblasts induced migration of macrophages and this was blocked by EPL. EPL also blocked TGF-β1 induced gene expression of intedeukin-6 (IL-6) in atrial fibroblasts. Therefore, we conclude that EPL attenuated atrial fibrosis and macrophage infiltra- tion in Tx mice. TGF-I31 and IL-6 were involved in the impacts of EPL on activation of atrial fibroblasts and interactions be- tween fibroblasts and macrophages.展开更多
基金supported by National Nature Science Foundation of China(30871083)Doctoral Innovation Fund Projects from Shanghai Jiao Tong University School of Medicine(BXJ201442)
文摘The purpose of the present study was to study the impacts of eplerenone (EPL), an antagonist of mineralocorticoid receptors (MR), on atrial fibrosis in a mouse model with selective fibrosis in the atrium, and to explore the possible mechanisms. Using mutant TGF-β1 transgenic (Tx) mice, we first demonstrated that EPL inhibited atrial fibrosis specifically and decreased mac- rophage accumulation in the atria of these mice. Results from immunohistochemistry and western blotting showed that EPL attenuated protein expression of fibrosis-related molecules such as connective tissue growth factor (CTGF) and fibronectin in the atria of Tx mice. In culture, EPL inhibited gene expression of fibrosis-related molecules such as fibronectin, ct-SMA, and CTGF in TGF-β1-stimulated atrial fibroblasts, Finally, using a co-culture system, we showed that TGF-β1 stimulated atrial fi- broblasts induced migration of macrophages and this was blocked by EPL. EPL also blocked TGF-β1 induced gene expression of intedeukin-6 (IL-6) in atrial fibroblasts. Therefore, we conclude that EPL attenuated atrial fibrosis and macrophage infiltra- tion in Tx mice. TGF-I31 and IL-6 were involved in the impacts of EPL on activation of atrial fibroblasts and interactions be- tween fibroblasts and macrophages.