Titanium and its alloys have been widely applied in many biomedical fields because of its excellent mechanical properties,corrosion resistance and good biocompatibility.However,problems such as rejection,shedding and ...Titanium and its alloys have been widely applied in many biomedical fields because of its excellent mechanical properties,corrosion resistance and good biocompatibility.However,problems such as rejection,shedding and infection will occur after titanium alloy implantation due to the low biological activity of titanium alloy surface.The structures with specific functions,which can enhance osseointegration and antibacterial properties,are fabricated on the surface of titanium implants to improve the biological activity between the titanium implants and human tissues.This paper presents a comprehensive review of recent developments and applications of surface functional structure in titanium and titanium alloy implants.The applications of surface functional structure on different titanium and titanium alloy implants are introduced,and their manufacturing technologies are summarized and compared.Furthermore,the fabrication of various surface functional structures used for titanium and titanium alloy implants is reviewed and analyzed in detail.Finally,the challenges affecting the development of surface functional structures applied in titanium and titanium alloy implants are outlined,and recommendations for future research are presented.展开更多
Lightweight porous materials with high load-bearing,damage tolerance and energy absorption(EA)as well as intelligence of shape recovery after material deformation are beneficial and critical for many applications,e.g....Lightweight porous materials with high load-bearing,damage tolerance and energy absorption(EA)as well as intelligence of shape recovery after material deformation are beneficial and critical for many applications,e.g.aerospace,automobiles,electronics,etc.Cuttlebone produced in the cuttlefish has evolved vertical walls with the optimal corrugation gradient,enabling stress homogenization,significant load bearing,and damage tolerance to protect the organism from high external pressures in the deep sea.This work illustrated that the complex hybrid wave shape in cuttlebone walls,becoming more tortuous from bottom to top,creates a lightweight,load-bearing structure with progressive failure.By mimicking the cuttlebone,a novel bionic hybrid structure(BHS)was proposed,and as a comparison,a regular corrugated structure and a straight wall structure were designed.Three types of designed structures have been successfully manufactured by laser powder bed fusion(LPBF)with NiTi powder.The LPBF-processed BHS exhibited a total porosity of 0.042% and a good dimensional accuracy with a peak deviation of 17.4μm.Microstructural analysis indicated that the LPBF-processed BHS had a strong(001)crystallographic orientation and an average size of 9.85μm.Mechanical analysis revealed the LPBF-processed BHS could withstand over 25000 times its weight without significant deformation and had the highest specific EA value(5.32 J·g^(−1))due to the absence of stress concentration and progressive wall failure during compression.Cyclic compression testing showed that LPBF-processed BHS possessed superior viscoelastic and elasticity energy dissipation capacity.Importantly,the uniform reversible phase transition from martensite to austenite in the walls enables the structure to largely recover its pre-deformation shape when heated(over 99% recovery rate).These design strategies can serve as valuable references for the development of intelligent components that possess high mechanical efficiency and shape memory capabilities.展开更多
With the continuous advancement in topology optimization and additive manufacturing(AM)technology,the capability to fabricate functionally graded materials and intricate cellular structures with spatially varying micr...With the continuous advancement in topology optimization and additive manufacturing(AM)technology,the capability to fabricate functionally graded materials and intricate cellular structures with spatially varying microstructures has grown significantly.However,a critical challenge is encountered in the design of these structures–the absence of robust interface connections between adjacent microstructures,potentially resulting in diminished efficiency or macroscopic failure.A Hybrid Level Set Method(HLSM)is proposed,specifically designed to enhance connectivity among non-uniform microstructures,contributing to the design of functionally graded cellular structures.The HLSM introduces a pioneering algorithm for effectively blending heterogeneous microstructure interfaces.Initially,an interpolation algorithm is presented to construct transition microstructures seamlessly connected on both sides.Subsequently,the algorithm enables the morphing of non-uniform unit cells to seamlessly adapt to interconnected adjacent microstructures.The method,seamlessly integrated into a multi-scale topology optimization framework using the level set method,exhibits its efficacy through numerical examples,showcasing its prowess in optimizing 2D and 3D functionally graded materials(FGM)and multi-scale topology optimization.In essence,the pressing issue of interface connections in complex structure design is not only addressed but also a robust methodology is introduced,substantiated by numerical evidence,advancing optimization capabilities in the realm of functionally graded materials and cellular structures.展开更多
The ex-situ incorporation of the secondary SiC reinforcement,along with the in-situ incorporation of the tertiary and quaternary Mg_(3)N_(2) and Si_(3)N_(4) phases,in the primary matrix of Mg_(2)Si is employed in orde...The ex-situ incorporation of the secondary SiC reinforcement,along with the in-situ incorporation of the tertiary and quaternary Mg_(3)N_(2) and Si_(3)N_(4) phases,in the primary matrix of Mg_(2)Si is employed in order to provide ultimate wear resistance based on the laser-irradiation-induced inclusion of N_(2) gas during laser powder bed fusion.This is substantialized based on both the thermal diffusion-and chemical reactionbased metallurgy of the Mg_(2)Si–SiC/nitride hybrid composite.This study also proposes a functional platform for systematically modulating a functionally graded structure and modeling build-direction-dependent architectonics during additive manufacturing.This strategy enables the development of a compositional gradient from the center to the edge of each melt pool of the Mg_(2)Si–SiC/nitride hybrid composite.Consequently,the coefficient of friction of the hybrid composite exhibits a 309.3%decrease to–1.67 compared to–0.54 for the conventional nonreinforced Mg_(2)Si structure,while the tensile strength exhibits a 171.3%increase to 831.5 MPa compared to 485.3 MPa for the conventional structure.This outstanding mechanical behavior is due to the(1)the complementary and synergistic reinforcement effects of the SiC and nitride compounds,each of which possesses an intrinsically high hardness,and(2)the strong adhesion of these compounds to the Mg_(2)Si matrix despite their small sizes and low concentrations.展开更多
According to the characteristics of agricultural development during different periods, agricultural development was basically divided into traditional period, planning system period and household contracting pedod to ...According to the characteristics of agricultural development during different periods, agricultural development was basically divided into traditional period, planning system period and household contracting pedod to discuss the related laws of agricultural development in China. The agricultural function expansion during different periods was analyzed in terms of agricultural structure evolution, while structural optimization and function expansion of modem agriculture in China were also studied. The results indicated that during the traditional period, agricultural structure emphasized feeding people and grain production while agricultural function reflected the economic function beyond surviving standard. During the planning system period, a unitary structural mode of agriculture was formed in China, which showed that agriculture was dominated by planting industry and planting industry was dominated by grain, while agriculture executed the mixed economic function beyond surviving and liv- ing standard. During the household contracting period, the industrial structure of agriculture in China gradually became diversification and optimi- zation, but as the economic function of industrial standard, agricultural development was still greatly inhibited. The structural evolution of modem agriculture in China must step forward towards collectivization and scale merit, while ecological function and social function of agriculture increas- ingly become important and the function of agricultural production becomes mere and more diverse.展开更多
[Objective] The study was to analyze the structure and function of HpaGXoo and the relationship between the two.[Method] Some related bioinformatics analysis software on internet such as NPSA,Swiss-Model,SAPS and Inte...[Objective] The study was to analyze the structure and function of HpaGXoo and the relationship between the two.[Method] Some related bioinformatics analysis software on internet such as NPSA,Swiss-Model,SAPS and InterPro Scan were adopted to analyze the structure and predict its function.[Result] HpaGXoo consists of 139 amino acids,and has many alpha-helical and coiled structure,no signal peptide on N-terminal and no transmembrane structure.It locates in bacterial cytoplasm.[Conclusion] The study will lay ...展开更多
[Objective] The aim was to explore function and efficiency of emergy input/ output of Hunan agricultural ecosystem to reveal relationship of human being with natural resources and environment. [Method] Emergy structur...[Objective] The aim was to explore function and efficiency of emergy input/ output of Hunan agricultural ecosystem to reveal relationship of human being with natural resources and environment. [Method] Emergy structure, function and efficien- cy of Hunan agricultural ecosystem were analyzed based on input/output data in Hunan Province in 2009 as per emergy theory. [Result] The structure characters of agricultural ecosystem were as follows: Hunan is characterized with traditional agri- culture, depending greatly on both human and animal labor. For industrial accessory emergy, chemical fertilizers make most contribution to the system, and agricultural mechanization is not satisfied. Furthermore, renewable ratio of industrial accessory emergy is lower, and development and potential of green energy is promising. In addition, prices of the products are lower, without consideration of contribution made by natural resources and environment. It also suggested that Hunan agricultural chain is short and added value of products is not high. In general, emergy output of farming and animal husbandry dominates and the prices are lower than those of forestry and fishery. The function of the system was as follows: With lower environ- mental load ratio, the system is overloaded by population and the index of sustain- able development was 5.96, suggesting that the system enjoys vitality and potential, but the economy is undeveloped and the pressure from natural resources and envi- ronment is not high. The emergy output ratio was a little lower than national level in 2009, suggesting Hunan agricultural production is extensive. [Conclusion] The re- search indicated that rapid increase of population should be controlled; surplus labor should be transferred; agricultural structure and products structure should be further adjusted; agricultural technology should be further developed; agdcultural mechaniza- tion and modernization should be improved.展开更多
From the 1950s to 1960s, large area of Populus simonii shelterbelts system was established in northern area of Shanxi Province. For reconstructing the old shelterbelts, more attentions should be paid to selecting suit...From the 1950s to 1960s, large area of Populus simonii shelterbelts system was established in northern area of Shanxi Province. For reconstructing the old shelterbelts, more attentions should be paid to selecting suitable tree species and design of logical shelterbelts structure. In order to provide a profound basis for the efficient establishment of shelterbelts, the study on function and structure of the farmland shelterbelts was conducted in Shuozhou and Datong areas, both are semi-arid areas in Northern Shanxi Province during 1996-2001. The wind-control effects of shelterbelts with different structures (close-spaced, wider-spaced, and widest-spaced) were investigated by portable wind vane and anemometer, wet and dry bulb thermometer, ground thermometer, glass service instrument. The results showed that the wind-control capacity of the shelterbelts during the leafing period should be thought as the criteria index in shelterbelts established. The wider-spaced shelterbelt that was made of 4-6 rows of trees, with a spacing of 2.0 m×3.0 m, had the best wind-control result.展开更多
It is well known that plants have functional equilibrium between their above-ground parts (shoots) and below-ground parts (roots), but whether the above-ground parts of plants have functional equilibrium between their...It is well known that plants have functional equilibrium between their above-ground parts (shoots) and below-ground parts (roots), but whether the above-ground parts of plants have functional equilibrium between their photosynthetic structures (leaves) and non-photosynthetic structures (branches and stem) is unknown. The purpose of this study is to test the hypotheses that: (1) the above-ground parts of plants have functional equilibriums between their photosynthetic structures and non-photosynthetic structures; (2) the maintenance of the equilibriums is guaranteed by the alteration of biomass partitioning to photosynthetic and non-photosynthetic structures. To test these hypotheses, a pruning experiment with four pruning intensities (0%, 20%, 50%, and 70%) were carried out with three subtropical Chinese tree species ( Ficus microcarpa, Ficus virens, Cinnamomum camphora). Pruning treatments were conducted in two successive years. The results were in conformity with the hypothesis, i.e. above-ground parts of trees had functional equilibriums between photosynthetic and non-photosynthetic structures. Pruning decreased instantaneously the mass ratios of photosynthetic structures to non-photosynthetic structures (P/NP) of all three tree species, the reduction in P/NP was strengthened with pruning intensity. However, one year after pruning, the P/NP of all pruned trees increased and were not smaller than those of unpruned trees. In agreement with the expectation, the biomass partitioning of pruned trees was altered, more newly produced above-ground biomass was partitioned to leaf growth and less to branch and stem growth, thus enabled the damaged trees to restore their functional equilibrium between photosynthetic and non-photosynthetic structures. It is clear that the maintenance of functional equilibrium between photosynthetic and non-photosynthetic structures guaranteed by the alteration of biomass partitioning provides plants a good strategy to resist external disturbance and damage.展开更多
Great attention has been paid to the development of very large floating structures. Owing to their extreme large size and great flexibility, the coupling between the structural deformation and fluid motion is signific...Great attention has been paid to the development of very large floating structures. Owing to their extreme large size and great flexibility, the coupling between the structural deformation and fluid motion is significant. This is a typical problem of hydroelasticity. Efficient and accurate estimation of the hydroelastic response of very large floating structures in waves is very important for design. In this paper, the plate Green function and fluid Green function are combined to analyze the hydroelastic response of very large floating structures. The plate Green function here is a new one proposed by the authors and it satisfies all boundary conditions for free-free rectangular plates on elastic foundations. The results are compared with some experimental data. It is shown that the method proposed in this paper is efficient and accurate. Finally, various factors affecting the hydroelastic response of very large floating structures are also studied.展开更多
In this article, we analyze the characters of SV-component receiver function of teleseismic body waves and its advantages in mapping the S-wave velocity structure of crust in detail. Similar to radial receiver functio...In this article, we analyze the characters of SV-component receiver function of teleseismic body waves and its advantages in mapping the S-wave velocity structure of crust in detail. Similar to radial receiver function, SV-component receiver function can be obtained by directly deconvolving the P-component from the SV-component of teleseismic recordings. Our analyses indicate that the change of amplitude of SV-component receiver function against the change of epicentral distance is less than that of radial receiver function. Moreover, the waveform of SV-component receiver function is simpler than the radial receiver function and gives prominence to the PS converted phases that are the most sensitive to the shear wave velocity structure in the inversion. The synthetic tests show that the convergence of SV-component receiver function inversion is faster than that of the radial receiver function inversion. As an example, we investigate the S-wave velocity structure beneath HIA sta-tion by using the SV-component receiver function inversion method.展开更多
Some studies have shown that left ventricular structure and function play an important role in the risk stratifi cation and prognosis of cardiovascular disease.The clinical application of left atrial function in cardi...Some studies have shown that left ventricular structure and function play an important role in the risk stratifi cation and prognosis of cardiovascular disease.The clinical application of left atrial function in cardiovascular disease has gradually attracted attention in the cardiovascular fi eld.There are many traditional methods to evaluate left atrial function.Left atrial function related indexes measured by echocardiography has been identifi ed as a powerful predictor of cardiovascular disease in recent years,but they have some limitations.The left atrial function index has been found to evaluate left atrial function more effectively than traditional parameters.Furthermore,it is a valuable predictor of the risk stratifi cation and prognosis in patients with clinical cardiovascular disease such as heart failure,atrial fi brillation,hypertension,and coronary heart disease.展开更多
Non-renewable fossil fuels have led to serious problems such as global warming,environmental pollution,etc.Oxygen electrocatalysis including oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)plays a cent...Non-renewable fossil fuels have led to serious problems such as global warming,environmental pollution,etc.Oxygen electrocatalysis including oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)plays a central role in clean energy conversion,enabling a number of sustainable processes for future air battery technologies.Fluorine,as the most electronegative element(4.0)not only can induce more efficient regulation for the electronic structure,but also can bring more abundant defects and other novel effects in materials selection and preparation for favorable catalysis with respect to the other nonmetal elements.However,an individual and comprehensive overview of fluorine-containing functional materials for oxygen electrocatalysis field is still blank.Therefore,it is very meaningful to review the recent progresses of fluorine-containing oxygen electrocatalysts.In this review,we first systematically summarize the controllable preparation methods and their possible development directions based on fluorine-containing materials from four preparation methods.Due to the strong electron-withdrawing properties of fluorine,its control of the electronic structure can effectively enhance the oxygen electrocatalytic activity of the materials.In addition,the catalytic enhancement effect of fluorine on carbonbased materials also includes the prevent oxidation and the layer peeling,and realizes the precise atomic control.And the catalytic improvement mechanism of fluorine containing metal-based compounds also includes the hydration of metal site,the crystal transformation,and the oxygen vacancy induction.Then,based on their various dimensions(0D–3D),we also have summarized the advantages of different morphologies on oxygen electrocatalytic performances.Finally,the prospects and possible future researching direction of F-containing oxygen electrocatalysts are presented(e.g.,novel pathways,advanced methods for measurement and simulation,field assistance and multi-functions).The review is considered valuable and helpful in exploring the novel designs and mechanism analyses of advanced fluorine-containing electrocatalysts.展开更多
The left atrium (LA) has been recognized as a morphophysiological barometer of left ventricular (LV) diastolic dysfunction. Because in the myocardial ischemia cascade where LV diastolic dysfunction often precedes LV s...The left atrium (LA) has been recognized as a morphophysiological barometer of left ventricular (LV) diastolic dysfunction. Because in the myocardial ischemia cascade where LV diastolic dysfunction often precedes LV systolic dysfunction, the LA which fashions as an early marker of diastolic anomaly, could equally reflect a declining LV function and/or be a good predictor of potential sequelae. We assessed this association of LA function with reduced LV systolic function among hospitalized patients. Among patients with reduced LV ejection fraction, LA passive ejection fraction was lower (0.172 ± 0.12 vs. 0.232 ± 0.14, p = 0.013) whereas LA kinetic energy was higher (6.48 ± 6.3 vs. 4.57 ± 3.5, p = 0.005). Echocardiographic assessment of LA function, therefore, appears correlated with LVEF and could be important when risk stratifying hospitalized patients.展开更多
Echocardiography is the most common diagnostic method for assessing atrial function but the technique has some limitations. Traditionally, assessment of left atrial function has been performed by measuring volumes wit...Echocardiography is the most common diagnostic method for assessing atrial function but the technique has some limitations. Traditionally, assessment of left atrial function has been performed by measuring volumes with 2D echocardiography. Additionally, it can be assessed with transmitral Doppler and pulmonary vein Doppler. Recently, an alternative method has been incorporated, namely, measurement of myocardial deformation with color tissue Doppler-derived strain. However, this method has several limitations, such as suboptimal reproducibility, angle-dependence, signal artifacts and the fact that it only measures regional strain and does not obtain information about the curved portion of the atrial roof. To overcome these limitations in the quantification of atrial function, the use of speckle tracking echocardiography (STE) strain has been proposed. This technique is not derived from Doppler but rather from 2D echocardiography; it is angle-independent and allows one to measure global as well as regional atrial strain. In this editorial, we describe the physical and pathophysiological concepts of STE and underline the clinical usefulness of this new technique.展开更多
Patients with mild traumatic brain injury have a diverse clinical presentation,and the underlying pathophysiology remains poorly understood.Magnetic resonance imaging is a non-invasive technique that has been widely u...Patients with mild traumatic brain injury have a diverse clinical presentation,and the underlying pathophysiology remains poorly understood.Magnetic resonance imaging is a non-invasive technique that has been widely utilized to investigate neuro biological markers after mild traumatic brain injury.This approach has emerged as a promising tool for investigating the pathogenesis of mild traumatic brain injury.G raph theory is a quantitative method of analyzing complex networks that has been widely used to study changes in brain structure and function.However,most previous mild traumatic brain injury studies using graph theory have focused on specific populations,with limited exploration of simultaneous abnormalities in structural and functional connectivity.Given that mild traumatic brain injury is the most common type of traumatic brain injury encounte red in clinical practice,further investigation of the patient characteristics and evolution of structural and functional connectivity is critical.In the present study,we explored whether abnormal structural and functional connectivity in the acute phase could serve as indicators of longitudinal changes in imaging data and cognitive function in patients with mild traumatic brain injury.In this longitudinal study,we enrolled 46 patients with mild traumatic brain injury who were assessed within 2 wee ks of injury,as well as 36 healthy controls.Resting-state functional magnetic resonance imaging and diffusion-weighted imaging data were acquired for graph theoretical network analysis.In the acute phase,patients with mild traumatic brain injury demonstrated reduced structural connectivity in the dorsal attention network.More than 3 months of followup data revealed signs of recovery in structural and functional connectivity,as well as cognitive function,in 22 out of the 46 patients.Furthermore,better cognitive function was associated with more efficient networks.Finally,our data indicated that small-worldness in the acute stage could serve as a predictor of longitudinal changes in connectivity in patients with mild traumatic brain injury.These findings highlight the importance of integrating structural and functional connectivity in unde rstanding the occurrence and evolution of mild traumatic brain injury.Additionally,exploratory analysis based on subnetworks could serve a predictive function in the prognosis of patients with mild traumatic brain injury.展开更多
Objective To evaluate left atrial function in essential hypertension patients with different patterns of left ventricular geometric models by real-time three-dimensional echocardiography (RT-3DE) and left atrial tra...Objective To evaluate left atrial function in essential hypertension patients with different patterns of left ventricular geometric models by real-time three-dimensional echocardiography (RT-3DE) and left atrial tracking (EAT).展开更多
The evaluation of thermal resistance constitution for packaged A1GaN/GaN high electron mobility transistor (HEMT) by structure function method is proposed in this paper. The evaluation is based on the transient heat...The evaluation of thermal resistance constitution for packaged A1GaN/GaN high electron mobility transistor (HEMT) by structure function method is proposed in this paper. The evaluation is based on the transient heating measurement of the A1GaN/GaN HEMT by pulsed electrical temperature sensitive parameter method. The extracted chip-level and package-level thermal resistances of the packaged multi-finger A1GaN/GaN HEMT with 400μm SiC substrate are 22.5 K/W and 7.2 K/W respectively, which provides a non-invasive method to evaluate the chip-level thermal resistance of packaged A1GaN/GaN HEMTs. It is also experimentally proved that the extraction of the chip- level thermal resistance by this proposed method is not influenced by package form of the tested device and temperature boundary condition of measurement stage.展开更多
The S wave velocity structure in Changbaishan volcanic region was obtained from teleseismic receiver function modeling. The results show that there exist distinct low velocity layers in crust in volcano area. Beneath ...The S wave velocity structure in Changbaishan volcanic region was obtained from teleseismic receiver function modeling. The results show that there exist distinct low velocity layers in crust in volcano area. Beneath WQD station near to the Tianchi caldera the low velocity layer at 8 km depth is 20 km thick with the lowest S-wave velocity about 2.2 km/s At EDO station located 50 km north of Tianchi caldera, no obvious crustal low velocity layer is detected. In the volcanic region, the thickness of crustal low velocity layer is greater and the lowest velocity is more obvious with the distance shorter to the caldera. It indicates the existence of the high temperature material or magma reservoir in crust near the Tianchi caldera. The receiver functions and inversion result from different back azimuths at CBS permanent seismic station show that the thickness of near surface low velocity layer and Moho depth change with directions. The near surface low velocity layer is obviously thicker in south direction. The Moho depth shows slight uplifting in the direction of the caldera located. We con- sider that the special near surface velocity structure is the main cause of relatively lower prominent frequency of volcanic earthquake waveforms recorded by CBS station. The slight uplifting of Moho beneath Tianchi caldera indicates there is a material exchanging channel between upper mantle and magma reservoir in crust.展开更多
The effect of In doping on the electronic structure and optical properties of SrTiO3 is investigated by the first-principles calculation of plane wave ultra-soft pseudo-potential based on the density function theory ...The effect of In doping on the electronic structure and optical properties of SrTiO3 is investigated by the first-principles calculation of plane wave ultra-soft pseudo-potential based on the density function theory (DFT). The calculated results reveal that due to the hole doping, the Fermi level shifts into valence bands (VBs) for SrTi1-x InxO3 with x = 0.125 and the system exhibits p-type degenerate semiconductor features. It is suggested according to the density of states (DOS) of SrTi0.875In0.125O3 that the band structure of p-type SrTIO3 can be described by a rigid band model. At the same time, the DOS shifts towards high energies and the optical band gap is broadened. The wide band gap, small transition probability and weak absorption due to the low partial density of states (PDOS) of impurity in the Fermi level result in the optical transparency of the film. The optical transmittance of In doped SrTiO3 is higher than 85% in a visible region, and the transmittance improves greatly. And the cut-off wavelength shifts into a blue-light region with the increase of In doping concentration.展开更多
基金Supported by National Natural Science Foundation of China (Grant Nos.52235011,51905352)Shenzhen Municipal Excellent Science and Technology Creative Talent Training Program (Grant No.RCBS20210609103819021)+1 种基金Guangdong Provincial Basic and Applied Basic Research Foundation (Grant No.2023B1515120086)Shenzhen Municipal Science and Technology Planning Project (Grant No.CJGJZD20230724093600001)。
文摘Titanium and its alloys have been widely applied in many biomedical fields because of its excellent mechanical properties,corrosion resistance and good biocompatibility.However,problems such as rejection,shedding and infection will occur after titanium alloy implantation due to the low biological activity of titanium alloy surface.The structures with specific functions,which can enhance osseointegration and antibacterial properties,are fabricated on the surface of titanium implants to improve the biological activity between the titanium implants and human tissues.This paper presents a comprehensive review of recent developments and applications of surface functional structure in titanium and titanium alloy implants.The applications of surface functional structure on different titanium and titanium alloy implants are introduced,and their manufacturing technologies are summarized and compared.Furthermore,the fabrication of various surface functional structures used for titanium and titanium alloy implants is reviewed and analyzed in detail.Finally,the challenges affecting the development of surface functional structures applied in titanium and titanium alloy implants are outlined,and recommendations for future research are presented.
基金supported by the National Natural Science Foundation of China(Grant No.52225503)National Key Research and Development Program of China(Grant No.2022YFB3805701)+1 种基金Development Program of Jiangsu Province(Grant Nos.BE2022069 and BE2022069-1)Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX21-0207).
文摘Lightweight porous materials with high load-bearing,damage tolerance and energy absorption(EA)as well as intelligence of shape recovery after material deformation are beneficial and critical for many applications,e.g.aerospace,automobiles,electronics,etc.Cuttlebone produced in the cuttlefish has evolved vertical walls with the optimal corrugation gradient,enabling stress homogenization,significant load bearing,and damage tolerance to protect the organism from high external pressures in the deep sea.This work illustrated that the complex hybrid wave shape in cuttlebone walls,becoming more tortuous from bottom to top,creates a lightweight,load-bearing structure with progressive failure.By mimicking the cuttlebone,a novel bionic hybrid structure(BHS)was proposed,and as a comparison,a regular corrugated structure and a straight wall structure were designed.Three types of designed structures have been successfully manufactured by laser powder bed fusion(LPBF)with NiTi powder.The LPBF-processed BHS exhibited a total porosity of 0.042% and a good dimensional accuracy with a peak deviation of 17.4μm.Microstructural analysis indicated that the LPBF-processed BHS had a strong(001)crystallographic orientation and an average size of 9.85μm.Mechanical analysis revealed the LPBF-processed BHS could withstand over 25000 times its weight without significant deformation and had the highest specific EA value(5.32 J·g^(−1))due to the absence of stress concentration and progressive wall failure during compression.Cyclic compression testing showed that LPBF-processed BHS possessed superior viscoelastic and elasticity energy dissipation capacity.Importantly,the uniform reversible phase transition from martensite to austenite in the walls enables the structure to largely recover its pre-deformation shape when heated(over 99% recovery rate).These design strategies can serve as valuable references for the development of intelligent components that possess high mechanical efficiency and shape memory capabilities.
基金the National Key Research and Development Program of China(Grant Number 2021YFB1714600)the National Natural Science Foundation of China(Grant Number 52075195)the Fundamental Research Funds for the Central Universities,China through Program No.2172019kfyXJJS078.
文摘With the continuous advancement in topology optimization and additive manufacturing(AM)technology,the capability to fabricate functionally graded materials and intricate cellular structures with spatially varying microstructures has grown significantly.However,a critical challenge is encountered in the design of these structures–the absence of robust interface connections between adjacent microstructures,potentially resulting in diminished efficiency or macroscopic failure.A Hybrid Level Set Method(HLSM)is proposed,specifically designed to enhance connectivity among non-uniform microstructures,contributing to the design of functionally graded cellular structures.The HLSM introduces a pioneering algorithm for effectively blending heterogeneous microstructure interfaces.Initially,an interpolation algorithm is presented to construct transition microstructures seamlessly connected on both sides.Subsequently,the algorithm enables the morphing of non-uniform unit cells to seamlessly adapt to interconnected adjacent microstructures.The method,seamlessly integrated into a multi-scale topology optimization framework using the level set method,exhibits its efficacy through numerical examples,showcasing its prowess in optimizing 2D and 3D functionally graded materials(FGM)and multi-scale topology optimization.In essence,the pressing issue of interface connections in complex structure design is not only addressed but also a robust methodology is introduced,substantiated by numerical evidence,advancing optimization capabilities in the realm of functionally graded materials and cellular structures.
基金supported by the Learning & Academic Research Institution for Master’s and Ph.D. Students and Postdocs (LAMP) Program of the National Research Foundation of Korea (NRF) grant funded by the Ministry of Education (No. RS-2023-00285353)supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (NRF-2021R1A2C3006662, NRF-2022R1A5A1030054, and 2021R1A2C1091301)+3 种基金the support from Natural Sciences and Engineering Research Council of Canada (NSERC)Canada Foundation for Innovation (CFI)Atlantic Canada Opportunities Agency (ACOA)the New Brunswick Innovation Foundation (NBIF)
文摘The ex-situ incorporation of the secondary SiC reinforcement,along with the in-situ incorporation of the tertiary and quaternary Mg_(3)N_(2) and Si_(3)N_(4) phases,in the primary matrix of Mg_(2)Si is employed in order to provide ultimate wear resistance based on the laser-irradiation-induced inclusion of N_(2) gas during laser powder bed fusion.This is substantialized based on both the thermal diffusion-and chemical reactionbased metallurgy of the Mg_(2)Si–SiC/nitride hybrid composite.This study also proposes a functional platform for systematically modulating a functionally graded structure and modeling build-direction-dependent architectonics during additive manufacturing.This strategy enables the development of a compositional gradient from the center to the edge of each melt pool of the Mg_(2)Si–SiC/nitride hybrid composite.Consequently,the coefficient of friction of the hybrid composite exhibits a 309.3%decrease to–1.67 compared to–0.54 for the conventional nonreinforced Mg_(2)Si structure,while the tensile strength exhibits a 171.3%increase to 831.5 MPa compared to 485.3 MPa for the conventional structure.This outstanding mechanical behavior is due to the(1)the complementary and synergistic reinforcement effects of the SiC and nitride compounds,each of which possesses an intrinsically high hardness,and(2)the strong adhesion of these compounds to the Mg_(2)Si matrix despite their small sizes and low concentrations.
文摘According to the characteristics of agricultural development during different periods, agricultural development was basically divided into traditional period, planning system period and household contracting pedod to discuss the related laws of agricultural development in China. The agricultural function expansion during different periods was analyzed in terms of agricultural structure evolution, while structural optimization and function expansion of modem agriculture in China were also studied. The results indicated that during the traditional period, agricultural structure emphasized feeding people and grain production while agricultural function reflected the economic function beyond surviving standard. During the planning system period, a unitary structural mode of agriculture was formed in China, which showed that agriculture was dominated by planting industry and planting industry was dominated by grain, while agriculture executed the mixed economic function beyond surviving and liv- ing standard. During the household contracting period, the industrial structure of agriculture in China gradually became diversification and optimi- zation, but as the economic function of industrial standard, agricultural development was still greatly inhibited. The structural evolution of modem agriculture in China must step forward towards collectivization and scale merit, while ecological function and social function of agriculture increas- ingly become important and the function of agricultural production becomes mere and more diverse.
基金Supported by Langfang Teachers College Research Grant(LSZB200803)~~
文摘[Objective] The study was to analyze the structure and function of HpaGXoo and the relationship between the two.[Method] Some related bioinformatics analysis software on internet such as NPSA,Swiss-Model,SAPS and InterPro Scan were adopted to analyze the structure and predict its function.[Result] HpaGXoo consists of 139 amino acids,and has many alpha-helical and coiled structure,no signal peptide on N-terminal and no transmembrane structure.It locates in bacterial cytoplasm.[Conclusion] The study will lay ...
基金Supported by National Social Science Foundation (11BJY029)Hunan Social ScienceFoundation (2010YBB348)+1 种基金Innovation Platform Funds of Hunan High Institutions(10K080)Hunan Soft Science Key Project (2011ZK2046)~~
文摘[Objective] The aim was to explore function and efficiency of emergy input/ output of Hunan agricultural ecosystem to reveal relationship of human being with natural resources and environment. [Method] Emergy structure, function and efficien- cy of Hunan agricultural ecosystem were analyzed based on input/output data in Hunan Province in 2009 as per emergy theory. [Result] The structure characters of agricultural ecosystem were as follows: Hunan is characterized with traditional agri- culture, depending greatly on both human and animal labor. For industrial accessory emergy, chemical fertilizers make most contribution to the system, and agricultural mechanization is not satisfied. Furthermore, renewable ratio of industrial accessory emergy is lower, and development and potential of green energy is promising. In addition, prices of the products are lower, without consideration of contribution made by natural resources and environment. It also suggested that Hunan agricultural chain is short and added value of products is not high. In general, emergy output of farming and animal husbandry dominates and the prices are lower than those of forestry and fishery. The function of the system was as follows: With lower environ- mental load ratio, the system is overloaded by population and the index of sustain- able development was 5.96, suggesting that the system enjoys vitality and potential, but the economy is undeveloped and the pressure from natural resources and envi- ronment is not high. The emergy output ratio was a little lower than national level in 2009, suggesting Hunan agricultural production is extensive. [Conclusion] The re- search indicated that rapid increase of population should be controlled; surplus labor should be transferred; agricultural structure and products structure should be further adjusted; agricultural technology should be further developed; agdcultural mechaniza- tion and modernization should be improved.
基金The study was supported by Shanxi Ninth Five-year Plan Project (No. 961016).
文摘From the 1950s to 1960s, large area of Populus simonii shelterbelts system was established in northern area of Shanxi Province. For reconstructing the old shelterbelts, more attentions should be paid to selecting suitable tree species and design of logical shelterbelts structure. In order to provide a profound basis for the efficient establishment of shelterbelts, the study on function and structure of the farmland shelterbelts was conducted in Shuozhou and Datong areas, both are semi-arid areas in Northern Shanxi Province during 1996-2001. The wind-control effects of shelterbelts with different structures (close-spaced, wider-spaced, and widest-spaced) were investigated by portable wind vane and anemometer, wet and dry bulb thermometer, ground thermometer, glass service instrument. The results showed that the wind-control capacity of the shelterbelts during the leafing period should be thought as the criteria index in shelterbelts established. The wider-spaced shelterbelt that was made of 4-6 rows of trees, with a spacing of 2.0 m×3.0 m, had the best wind-control result.
文摘It is well known that plants have functional equilibrium between their above-ground parts (shoots) and below-ground parts (roots), but whether the above-ground parts of plants have functional equilibrium between their photosynthetic structures (leaves) and non-photosynthetic structures (branches and stem) is unknown. The purpose of this study is to test the hypotheses that: (1) the above-ground parts of plants have functional equilibriums between their photosynthetic structures and non-photosynthetic structures; (2) the maintenance of the equilibriums is guaranteed by the alteration of biomass partitioning to photosynthetic and non-photosynthetic structures. To test these hypotheses, a pruning experiment with four pruning intensities (0%, 20%, 50%, and 70%) were carried out with three subtropical Chinese tree species ( Ficus microcarpa, Ficus virens, Cinnamomum camphora). Pruning treatments were conducted in two successive years. The results were in conformity with the hypothesis, i.e. above-ground parts of trees had functional equilibriums between photosynthetic and non-photosynthetic structures. Pruning decreased instantaneously the mass ratios of photosynthetic structures to non-photosynthetic structures (P/NP) of all three tree species, the reduction in P/NP was strengthened with pruning intensity. However, one year after pruning, the P/NP of all pruned trees increased and were not smaller than those of unpruned trees. In agreement with the expectation, the biomass partitioning of pruned trees was altered, more newly produced above-ground biomass was partitioned to leaf growth and less to branch and stem growth, thus enabled the damaged trees to restore their functional equilibrium between photosynthetic and non-photosynthetic structures. It is clear that the maintenance of functional equilibrium between photosynthetic and non-photosynthetic structures guaranteed by the alteration of biomass partitioning provides plants a good strategy to resist external disturbance and damage.
文摘Great attention has been paid to the development of very large floating structures. Owing to their extreme large size and great flexibility, the coupling between the structural deformation and fluid motion is significant. This is a typical problem of hydroelasticity. Efficient and accurate estimation of the hydroelastic response of very large floating structures in waves is very important for design. In this paper, the plate Green function and fluid Green function are combined to analyze the hydroelastic response of very large floating structures. The plate Green function here is a new one proposed by the authors and it satisfies all boundary conditions for free-free rectangular plates on elastic foundations. The results are compared with some experimental data. It is shown that the method proposed in this paper is efficient and accurate. Finally, various factors affecting the hydroelastic response of very large floating structures are also studied.
基金State Key Basic Research Development and Programming Project (G199804070201) State Natural Science Foundation (40074008).
文摘In this article, we analyze the characters of SV-component receiver function of teleseismic body waves and its advantages in mapping the S-wave velocity structure of crust in detail. Similar to radial receiver function, SV-component receiver function can be obtained by directly deconvolving the P-component from the SV-component of teleseismic recordings. Our analyses indicate that the change of amplitude of SV-component receiver function against the change of epicentral distance is less than that of radial receiver function. Moreover, the waveform of SV-component receiver function is simpler than the radial receiver function and gives prominence to the PS converted phases that are the most sensitive to the shear wave velocity structure in the inversion. The synthetic tests show that the convergence of SV-component receiver function inversion is faster than that of the radial receiver function inversion. As an example, we investigate the S-wave velocity structure beneath HIA sta-tion by using the SV-component receiver function inversion method.
基金This work was supported by grants from the National Natural Science Foundation of China(81800056),the Science&Technology Development Fund of Tianjin Education Commission for Higher Education(2017KJ137),and the Key Research and Development Program of Hunan Province(2019SK2021).Scientifi c research project approved by Hunan Provincial Health Commission(202103012117).
文摘Some studies have shown that left ventricular structure and function play an important role in the risk stratifi cation and prognosis of cardiovascular disease.The clinical application of left atrial function in cardiovascular disease has gradually attracted attention in the cardiovascular fi eld.There are many traditional methods to evaluate left atrial function.Left atrial function related indexes measured by echocardiography has been identifi ed as a powerful predictor of cardiovascular disease in recent years,but they have some limitations.The left atrial function index has been found to evaluate left atrial function more effectively than traditional parameters.Furthermore,it is a valuable predictor of the risk stratifi cation and prognosis in patients with clinical cardiovascular disease such as heart failure,atrial fi brillation,hypertension,and coronary heart disease.
基金supported by the National Natural Science Foundation of China,China(52203066,51973157,51673148 and 51678411)the Science and Technology Plans of Tianjin,China(19PTSYJC00010)+3 种基金China Postdoctoral Science Foundation Grant,China(2019M651047)the Tianjin Research Innovation Project for Postgraduate Students,China(2020YJSB062)the Tianjin Municipal College Student’Innovation And Entrepreneurship Training Program,China(202110058052)the National Innovation and Entrepreneurship Training Program for College Students,China(202110058017)。
文摘Non-renewable fossil fuels have led to serious problems such as global warming,environmental pollution,etc.Oxygen electrocatalysis including oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)plays a central role in clean energy conversion,enabling a number of sustainable processes for future air battery technologies.Fluorine,as the most electronegative element(4.0)not only can induce more efficient regulation for the electronic structure,but also can bring more abundant defects and other novel effects in materials selection and preparation for favorable catalysis with respect to the other nonmetal elements.However,an individual and comprehensive overview of fluorine-containing functional materials for oxygen electrocatalysis field is still blank.Therefore,it is very meaningful to review the recent progresses of fluorine-containing oxygen electrocatalysts.In this review,we first systematically summarize the controllable preparation methods and their possible development directions based on fluorine-containing materials from four preparation methods.Due to the strong electron-withdrawing properties of fluorine,its control of the electronic structure can effectively enhance the oxygen electrocatalytic activity of the materials.In addition,the catalytic enhancement effect of fluorine on carbonbased materials also includes the prevent oxidation and the layer peeling,and realizes the precise atomic control.And the catalytic improvement mechanism of fluorine containing metal-based compounds also includes the hydration of metal site,the crystal transformation,and the oxygen vacancy induction.Then,based on their various dimensions(0D–3D),we also have summarized the advantages of different morphologies on oxygen electrocatalytic performances.Finally,the prospects and possible future researching direction of F-containing oxygen electrocatalysts are presented(e.g.,novel pathways,advanced methods for measurement and simulation,field assistance and multi-functions).The review is considered valuable and helpful in exploring the novel designs and mechanism analyses of advanced fluorine-containing electrocatalysts.
文摘The left atrium (LA) has been recognized as a morphophysiological barometer of left ventricular (LV) diastolic dysfunction. Because in the myocardial ischemia cascade where LV diastolic dysfunction often precedes LV systolic dysfunction, the LA which fashions as an early marker of diastolic anomaly, could equally reflect a declining LV function and/or be a good predictor of potential sequelae. We assessed this association of LA function with reduced LV systolic function among hospitalized patients. Among patients with reduced LV ejection fraction, LA passive ejection fraction was lower (0.172 ± 0.12 vs. 0.232 ± 0.14, p = 0.013) whereas LA kinetic energy was higher (6.48 ± 6.3 vs. 4.57 ± 3.5, p = 0.005). Echocardiographic assessment of LA function, therefore, appears correlated with LVEF and could be important when risk stratifying hospitalized patients.
文摘Echocardiography is the most common diagnostic method for assessing atrial function but the technique has some limitations. Traditionally, assessment of left atrial function has been performed by measuring volumes with 2D echocardiography. Additionally, it can be assessed with transmitral Doppler and pulmonary vein Doppler. Recently, an alternative method has been incorporated, namely, measurement of myocardial deformation with color tissue Doppler-derived strain. However, this method has several limitations, such as suboptimal reproducibility, angle-dependence, signal artifacts and the fact that it only measures regional strain and does not obtain information about the curved portion of the atrial roof. To overcome these limitations in the quantification of atrial function, the use of speckle tracking echocardiography (STE) strain has been proposed. This technique is not derived from Doppler but rather from 2D echocardiography; it is angle-independent and allows one to measure global as well as regional atrial strain. In this editorial, we describe the physical and pathophysiological concepts of STE and underline the clinical usefulness of this new technique.
基金supported by the National Natural Science Foundation of China,Nos.81671671(to JL),61971451(to JL),U22A2034(to XK),62177047(to XK)the National Defense Science and Technology Collaborative Innovation Major Project of Central South University,No.2021gfcx05(to JL)+6 种基金Clinical Research Cen terfor Medical Imaging of Hunan Province,No.2020SK4001(to JL)Key Emergency Project of Pneumonia Epidemic of Novel Coronavirus Infection of Hu nan Province,No.2020SK3006(to JL)Innovative Special Construction Foundation of Hunan Province,No.2019SK2131(to JL)the Science and Technology lnnovation Program of Hunan Province,Nos.2021RC4016(to JL),2021SK53503(to ML)Scientific Research Program of Hunan Commission of Health,No.202209044797(to JL)Central South University Research Program of Advanced Interdisciplinary Studies,No.2023Q YJC020(to XK)the Natural Science Foundation of Hunan Province,No.2022JJ30814(to ML)。
文摘Patients with mild traumatic brain injury have a diverse clinical presentation,and the underlying pathophysiology remains poorly understood.Magnetic resonance imaging is a non-invasive technique that has been widely utilized to investigate neuro biological markers after mild traumatic brain injury.This approach has emerged as a promising tool for investigating the pathogenesis of mild traumatic brain injury.G raph theory is a quantitative method of analyzing complex networks that has been widely used to study changes in brain structure and function.However,most previous mild traumatic brain injury studies using graph theory have focused on specific populations,with limited exploration of simultaneous abnormalities in structural and functional connectivity.Given that mild traumatic brain injury is the most common type of traumatic brain injury encounte red in clinical practice,further investigation of the patient characteristics and evolution of structural and functional connectivity is critical.In the present study,we explored whether abnormal structural and functional connectivity in the acute phase could serve as indicators of longitudinal changes in imaging data and cognitive function in patients with mild traumatic brain injury.In this longitudinal study,we enrolled 46 patients with mild traumatic brain injury who were assessed within 2 wee ks of injury,as well as 36 healthy controls.Resting-state functional magnetic resonance imaging and diffusion-weighted imaging data were acquired for graph theoretical network analysis.In the acute phase,patients with mild traumatic brain injury demonstrated reduced structural connectivity in the dorsal attention network.More than 3 months of followup data revealed signs of recovery in structural and functional connectivity,as well as cognitive function,in 22 out of the 46 patients.Furthermore,better cognitive function was associated with more efficient networks.Finally,our data indicated that small-worldness in the acute stage could serve as a predictor of longitudinal changes in connectivity in patients with mild traumatic brain injury.These findings highlight the importance of integrating structural and functional connectivity in unde rstanding the occurrence and evolution of mild traumatic brain injury.Additionally,exploratory analysis based on subnetworks could serve a predictive function in the prognosis of patients with mild traumatic brain injury.
基金Supported by the Natural Science Foundation of Liaoning ProvinceChina(2013023010)
文摘Objective To evaluate left atrial function in essential hypertension patients with different patterns of left ventricular geometric models by real-time three-dimensional echocardiography (RT-3DE) and left atrial tracking (EAT).
基金supported by the Natural Science Foundation of Beijing,China (Grant No. 4092005)the National High Technology Research and Development Program of China (Grant No. 2009AA032704)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20091103110006)
文摘The evaluation of thermal resistance constitution for packaged A1GaN/GaN high electron mobility transistor (HEMT) by structure function method is proposed in this paper. The evaluation is based on the transient heating measurement of the A1GaN/GaN HEMT by pulsed electrical temperature sensitive parameter method. The extracted chip-level and package-level thermal resistances of the packaged multi-finger A1GaN/GaN HEMT with 400μm SiC substrate are 22.5 K/W and 7.2 K/W respectively, which provides a non-invasive method to evaluate the chip-level thermal resistance of packaged A1GaN/GaN HEMTs. It is also experimentally proved that the extraction of the chip- level thermal resistance by this proposed method is not influenced by package form of the tested device and temperature boundary condition of measurement stage.
基金supported by National Key Project of Scientific and Technical Supporting Programs Funded by Ministry of Science & Technology of China (2006BAC01B04)Joint Seismological Science Foundation of China (106023)Contribution No. is 09FE3006 of Institute of Geophysics,China Earthquake Administration
文摘The S wave velocity structure in Changbaishan volcanic region was obtained from teleseismic receiver function modeling. The results show that there exist distinct low velocity layers in crust in volcano area. Beneath WQD station near to the Tianchi caldera the low velocity layer at 8 km depth is 20 km thick with the lowest S-wave velocity about 2.2 km/s At EDO station located 50 km north of Tianchi caldera, no obvious crustal low velocity layer is detected. In the volcanic region, the thickness of crustal low velocity layer is greater and the lowest velocity is more obvious with the distance shorter to the caldera. It indicates the existence of the high temperature material or magma reservoir in crust near the Tianchi caldera. The receiver functions and inversion result from different back azimuths at CBS permanent seismic station show that the thickness of near surface low velocity layer and Moho depth change with directions. The near surface low velocity layer is obviously thicker in south direction. The Moho depth shows slight uplifting in the direction of the caldera located. We con- sider that the special near surface velocity structure is the main cause of relatively lower prominent frequency of volcanic earthquake waveforms recorded by CBS station. The slight uplifting of Moho beneath Tianchi caldera indicates there is a material exchanging channel between upper mantle and magma reservoir in crust.
基金Project supported by the Natural Science Foundation of Shaanxi Province, China (Grant No 2005F06).
文摘The effect of In doping on the electronic structure and optical properties of SrTiO3 is investigated by the first-principles calculation of plane wave ultra-soft pseudo-potential based on the density function theory (DFT). The calculated results reveal that due to the hole doping, the Fermi level shifts into valence bands (VBs) for SrTi1-x InxO3 with x = 0.125 and the system exhibits p-type degenerate semiconductor features. It is suggested according to the density of states (DOS) of SrTi0.875In0.125O3 that the band structure of p-type SrTIO3 can be described by a rigid band model. At the same time, the DOS shifts towards high energies and the optical band gap is broadened. The wide band gap, small transition probability and weak absorption due to the low partial density of states (PDOS) of impurity in the Fermi level result in the optical transparency of the film. The optical transmittance of In doped SrTiO3 is higher than 85% in a visible region, and the transmittance improves greatly. And the cut-off wavelength shifts into a blue-light region with the increase of In doping concentration.