[Objective] The research aimed to establish the high frequency regeneration system of Atropa belladonna L. and screen the kanamycin (Kan) resistance. [Method] The leaves and axillary buds of Atropa belladonna L. wer...[Objective] The research aimed to establish the high frequency regeneration system of Atropa belladonna L. and screen the kanamycin (Kan) resistance. [Method] The leaves and axillary buds of Atropa belladonna L. were as the explants,the influences of different ratios of 6-BA and NAA in the medium on the adventitious bud differentiation and the sensibility of leaf on Kan were studied. [Result] MS+4.5 mg/L 6-BA+0.2 mg/L NAA was the optimum medium of leaf adventitious bud differentiation,and the differentiation ratio of adventitious bud reached 100%. The number of adventitious bud differentiation on 1. 0 cm ×1. 0 cm leaf block averagely reached 5.85. MS+3.0 mg/L 6-BA+0.1 mg/L NAA was the optimum medium of axillary bud adventitious bud differentiation,and the differentiation ratio of adventitious bud reached 100%. The average number of adventitious bud differentiation in every axillary bud was during 4-8. The optimum screening concentration for genetic transformation of Atropa belladonna L. leaf was 400.0 mg/L of Kan. [Conclusion] The research laid the foundation for the rapid propagation of Atropa belladonna L. aseptic seedling and the genetic transformation based on the leaf disc cocultivation.展开更多
[Objective] The aim was to clone H6H gene from Atropa belladonna and construct an efficient plant expression vector.[Method] The coding sequence of H6H(Hyoscyamine 6β-hydroxylase)was cloned from Atropa belladonna w...[Objective] The aim was to clone H6H gene from Atropa belladonna and construct an efficient plant expression vector.[Method] The coding sequence of H6H(Hyoscyamine 6β-hydroxylase)was cloned from Atropa belladonna with RT-PCR.Then,the sequence was subcloned into the reconstructed plant binary expression vector p2301 to construct the recombinant vector p2301-H6H,which was then introduced into Agrobacterium tumefaciens strain LBA4404 and Agrobacterium rhizogenes strain C58C1,respectively.[Result] The engineering bacteria p2301-H6H-LBA4404 and p2301-H6H-C58C1 which could be directly used in genetic improvement were obtained.[Conclusion] The present research provided basis for the increasing of alkaloid content of Atropa belladonna by plant genetic engineering technology.展开更多
基金Supported by National High Technology Research Development Plan Item (2010AA100503)~~
文摘[Objective] The research aimed to establish the high frequency regeneration system of Atropa belladonna L. and screen the kanamycin (Kan) resistance. [Method] The leaves and axillary buds of Atropa belladonna L. were as the explants,the influences of different ratios of 6-BA and NAA in the medium on the adventitious bud differentiation and the sensibility of leaf on Kan were studied. [Result] MS+4.5 mg/L 6-BA+0.2 mg/L NAA was the optimum medium of leaf adventitious bud differentiation,and the differentiation ratio of adventitious bud reached 100%. The number of adventitious bud differentiation on 1. 0 cm ×1. 0 cm leaf block averagely reached 5.85. MS+3.0 mg/L 6-BA+0.1 mg/L NAA was the optimum medium of axillary bud adventitious bud differentiation,and the differentiation ratio of adventitious bud reached 100%. The average number of adventitious bud differentiation in every axillary bud was during 4-8. The optimum screening concentration for genetic transformation of Atropa belladonna L. leaf was 400.0 mg/L of Kan. [Conclusion] The research laid the foundation for the rapid propagation of Atropa belladonna L. aseptic seedling and the genetic transformation based on the leaf disc cocultivation.
基金Supported by Natural Science Foundation of Chongqing~~
文摘[Objective] The aim was to clone H6H gene from Atropa belladonna and construct an efficient plant expression vector.[Method] The coding sequence of H6H(Hyoscyamine 6β-hydroxylase)was cloned from Atropa belladonna with RT-PCR.Then,the sequence was subcloned into the reconstructed plant binary expression vector p2301 to construct the recombinant vector p2301-H6H,which was then introduced into Agrobacterium tumefaciens strain LBA4404 and Agrobacterium rhizogenes strain C58C1,respectively.[Result] The engineering bacteria p2301-H6H-LBA4404 and p2301-H6H-C58C1 which could be directly used in genetic improvement were obtained.[Conclusion] The present research provided basis for the increasing of alkaloid content of Atropa belladonna by plant genetic engineering technology.