Landfill leaks pose a serious threat to environmental health,risking the contamination of both groundwater and soil resources.Accurate investigation of these sites is essential for implementing effective prevention an...Landfill leaks pose a serious threat to environmental health,risking the contamination of both groundwater and soil resources.Accurate investigation of these sites is essential for implementing effective prevention and control measures.The self-potential(SP)stands out for its sensitivity to contamination plumes,offering a solution for monitoring and detecting the movement and seepage of subsurface pollutants.However,traditional SP inversion techniques heavily rely on precise subsurface resistivity information.In this study,we propose the Attention U-Net deep learning network for rapid SP inversion.By incorporating an attention mechanism,this algorithm effectively learns the relationship between array-style SP data and the location and extent of subsurface contaminated sources.We designed a synthetic landfill model with a heterogeneous resistivity structure to assess the performance of Attention U-Net deep learning network.Additionally,we conducted further validation using a laboratory model to assess its practical applicability.The results demonstrate that the algorithm is not solely dependent on resistivity information,enabling effective locating of the source distribution,even in models with intricate subsurface structures.Our work provides a promising tool for SP data processing,enhancing the applicability of this method in the field of near-subsurface environmental monitoring.展开更多
Quantum error correction, a technique that relies on the principle of redundancy to encode logical information into additional qubits to better protect the system from noise, is necessary to design a viable quantum co...Quantum error correction, a technique that relies on the principle of redundancy to encode logical information into additional qubits to better protect the system from noise, is necessary to design a viable quantum computer. For this new topological stabilizer code-XYZ^(2) code defined on the cellular lattice, it is implemented on a hexagonal lattice of qubits and it encodes the logical qubits with the help of stabilizer measurements of weight six and weight two. However topological stabilizer codes in cellular lattice quantum systems suffer from the detrimental effects of noise due to interaction with the environment. Several decoding approaches have been proposed to address this problem. Here, we propose the use of a state-attention based reinforcement learning decoder to decode XYZ^(2) codes, which enables the decoder to more accurately focus on the information related to the current decoding position, and the error correction accuracy of our reinforcement learning decoder model under the optimisation conditions can reach 83.27% under the depolarizing noise model, and we have measured thresholds of 0.18856 and 0.19043 for XYZ^(2) codes at code spacing of 3–7 and 7–11, respectively. our study provides directions and ideas for applications of decoding schemes combining reinforcement learning attention mechanisms to other topological quantum error-correcting codes.展开更多
Vehicle re-identification(ReID)aims to retrieve the target vehicle in an extensive image gallery through its appearances from various views in the cross-camera scenario.It has gradually become a core technology of int...Vehicle re-identification(ReID)aims to retrieve the target vehicle in an extensive image gallery through its appearances from various views in the cross-camera scenario.It has gradually become a core technology of intelligent transportation system.Most existing vehicle re-identification models adopt the joint learning of global and local features.However,they directly use the extracted global features,resulting in insufficient feature expression.Moreover,local features are primarily obtained through advanced annotation and complex attention mechanisms,which require additional costs.To solve this issue,a multi-feature learning model with enhanced local attention for vehicle re-identification(MFELA)is proposed in this paper.The model consists of global and local branches.The global branch utilizes both middle and highlevel semantic features of ResNet50 to enhance the global representation capability.In addition,multi-scale pooling operations are used to obtain multiscale information.While the local branch utilizes the proposed Region Batch Dropblock(RBD),which encourages the model to learn discriminative features for different local regions and simultaneously drops corresponding same areas randomly in a batch during training to enhance the attention to local regions.Then features from both branches are combined to provide a more comprehensive and distinctive feature representation.Extensive experiments on VeRi-776 and VehicleID datasets prove that our method has excellent performance.展开更多
The setting of attention parameters plays a role in the performance of synergetic neural network based on PFAP model. This paper first analyzes the attention parameter setting algorithm based on award-penalty learning...The setting of attention parameters plays a role in the performance of synergetic neural network based on PFAP model. This paper first analyzes the attention parameter setting algorithm based on award-penalty learning mechanism. Then, it presents an improved algorithm to overcome its drawbacks. The experimental results demonstrate that the novel algorithm is better than the original one under the same circumstances.展开更多
The majority of existing graph-network-based few-shot models focus on a node-similarity update mode.The lack of adequate information intensies the risk of overtraining.In this paper,we propose a novel Multihead Attent...The majority of existing graph-network-based few-shot models focus on a node-similarity update mode.The lack of adequate information intensies the risk of overtraining.In this paper,we propose a novel Multihead Attention Graph Network to excavate discriminative relation and fulll effective information propagation.For edge update,the node-level attention is used to evaluate the similarities between the two nodes and the distributionlevel attention extracts more in-deep global relation.The cooperation between those two parts provides a discriminative and comprehensive expression for edge feature.For node update,we embrace the label-level attention to soften the noise of irrelevant nodes and optimize the update direction.Our proposed model is veried through extensive experiments on two few-shot benchmark MiniImageNet and CIFAR-FS dataset.The results suggest that our method has a strong capability of noise immunity and quick convergence.The classication accuracy outperforms most state-of-the-art approaches.展开更多
Indoor localization methods can help many sectors,such as healthcare centers,smart homes,museums,warehouses,and retail malls,improve their service areas.As a result,it is crucial to look for low-cost methods that can ...Indoor localization methods can help many sectors,such as healthcare centers,smart homes,museums,warehouses,and retail malls,improve their service areas.As a result,it is crucial to look for low-cost methods that can provide exact localization in indoor locations.In this context,imagebased localization methods can play an important role in estimating both the position and the orientation of cameras regarding an object.Image-based localization faces many issues,such as image scale and rotation variance.Also,image-based localization’s accuracy and speed(latency)are two critical factors.This paper proposes an efficient 6-DoF deep-learning model for image-based localization.This model incorporates the channel attention module and the Scale PyramidModule(SPM).It not only enhances accuracy but also ensures the model’s real-time performance.In complex scenes,a channel attention module is employed to distinguish between the textures of the foregrounds and backgrounds.Our model adapted an SPM,a feature pyramid module for dealing with image scale and rotation variance issues.Furthermore,the proposed model employs two regressions(two fully connected layers),one for position and the other for orientation,which increases outcome accuracy.Experiments on standard indoor and outdoor datasets show that the proposed model has a significantly lower Mean Squared Error(MSE)for both position and orientation.On the indoor 7-Scenes dataset,the MSE for the position is reduced to 0.19 m and 6.25°for the orientation.Furthermore,on the outdoor Cambridge landmarks dataset,the MSE for the position is reduced to 0.63 m and 2.03°for the orientation.According to the findings,the proposed approach is superior and more successful than the baseline methods.展开更多
Seismic data interpolation,especially irregularly sampled data interpolation,is a critical task for seismic processing and subsequent interpretation.Recently,with the development of machine learning and deep learning,...Seismic data interpolation,especially irregularly sampled data interpolation,is a critical task for seismic processing and subsequent interpretation.Recently,with the development of machine learning and deep learning,convolutional neural networks(CNNs)are applied for interpolating irregularly sampled seismic data.CNN based approaches can address the apparent defects of traditional interpolation methods,such as the low computational efficiency and the difficulty on parameters selection.However,current CNN based methods only consider the temporal and spatial features of irregularly sampled seismic data,which fail to consider the frequency features of seismic data,i.e.,the multi-scale features.To overcome these drawbacks,we propose a wavelet-based convolutional block attention deep learning(W-CBADL)network for irregularly sampled seismic data reconstruction.We firstly introduce the discrete wavelet transform(DWT)and the inverse wavelet transform(IWT)to the commonly used U-Net by considering the multi-scale features of irregularly sampled seismic data.Moreover,we propose to adopt the convolutional block attention module(CBAM)to precisely restore sampled seismic traces,which could apply the attention to both channel and spatial dimensions.Finally,we adopt the proposed W-CBADL model to synthetic and pre-stack field data to evaluate its validity and effectiveness.The results demonstrate that the proposed W-CBADL model could reconstruct irregularly sampled seismic data more effectively and more efficiently than the state-of-the-art contrastive CNN based models.展开更多
Online advertising has gained much attention on various platforms as a hugely lucrative market.In promoting content and advertisements in real life,the acquisition of user target actions is usually a multi-step proces...Online advertising has gained much attention on various platforms as a hugely lucrative market.In promoting content and advertisements in real life,the acquisition of user target actions is usually a multi-step process,such as impres-sion→click→conversion,which means the process from the delivery of the recommended item to the user’s click to the final conversion.Due to data sparsity or sample selection bias,it is difficult for the trained model to achieve the business goal of the target campaign.Multi-task learning,a classical solution to this pro-blem,aims to generalize better on the original task given several related tasks by exploiting the knowledge between tasks to share the same feature and label space.Adaptively learned task relations bring better performance to make full use of the correlation between tasks.We train a general model capable of captur-ing the relationships between various tasks on all existing active tasks from a meta-learning perspective.In addition,this paper proposes a Multi-task Attention Network(MAN)to identify commonalities and differences between tasks in the feature space.The model performance is improved by explicitly learning the stacking of task relationships in the label space.To illustrate the effectiveness of our method,experiments are conducted on Alibaba Click and Conversion Pre-diction(Ali-CCP)dataset.Experimental results show that the method outperforms the state-of-the-art multi-task learning methods.展开更多
The recent trends in Industry 4.0 and Internet of Things have encour-aged many factory managers to improve inspection processes to achieve automa-tion and high detection rates.However,the corresponding cost results of...The recent trends in Industry 4.0 and Internet of Things have encour-aged many factory managers to improve inspection processes to achieve automa-tion and high detection rates.However,the corresponding cost results of sample tests are still used for quality control.A low-cost automated optical inspection system that can be integrated with production lines to fully inspect products with-out adjustments is introduced herein.The corresponding mechanism design enables each product to maintain afixed position and orientation during inspec-tion to accelerate the inspection process.The proposed system combines image recognition and deep learning to measure the dimensions of the thread and iden-tify its defects within 20 s,which is lower than the production-line productivity per 30 s.In addition,the system is designed to be used for monitoring production lines and equipment status.The dimensional tolerance of the proposed system reaches 0.012 mm,and a 100%accuracy is achieved in terms of the defect reso-lution.In addition,an attention-based visualization approach is utilized to verify the rationale for the use of the convolutional neural network model and identify the location of thread defects.展开更多
This paper proposes a probabilistic model of object category learning in conjunction with attention-guided organized perception. This model consists of a model of attention-guided organized perception of object segmen...This paper proposes a probabilistic model of object category learning in conjunction with attention-guided organized perception. This model consists of a model of attention-guided organized perception of object segments on Markov random fields and a model of learning object categories based on a probabilistic latent component analysis. In attention guided organized perception, concurrent figure-ground segmentation is performed on dynamically-formed Markov random fields around salient preattentive points and co-occurring segments are grouped in the neighborhood of selective attended segments. In object category learning, a set of classes of each object category is obtained based on the probabilistic latent component analysis with the variable number of classes from bags of features of segments extracted from images which contain the categorical objects in context and an object category is represented by a composite of object classes. Through experiments using two image data sets, it is shown that the model learns a probabilistic structure of intra-categorical composition and inter-categorical difference of object categories and achieves high performance in object category recognition.展开更多
Background Video anomaly detection has always been a hot topic and has attracted increasing attention.Many of the existing methods for video anomaly detection depend on processing the entire video rather than consider...Background Video anomaly detection has always been a hot topic and has attracted increasing attention.Many of the existing methods for video anomaly detection depend on processing the entire video rather than considering only the significant context. Method This paper proposes a novel video anomaly detection method called COVAD that mainly focuses on the region of interest in the video instead of the entire video. Our proposed COVAD method is based on an autoencoded convolutional neural network and a coordinated attention mechanism,which can effectively capture meaningful objects in the video and dependencies among different objects. Relying on the existing memory-guided video frame prediction network, our algorithm can significantly predict the future motion and appearance of objects in a video more effectively. Result The proposed algorithm obtained better experimental results on multiple datasets and outperformed the baseline models considered in our analysis. Simultaneously, we provide an improved visual test that can provide pixel-level anomaly explanations.展开更多
The Internet provides a large number of tools and resources, such as social media sites, online newsgroups, blogs, electronic forums, virtual communities, and online travel sites, for consumers to express their views ...The Internet provides a large number of tools and resources, such as social media sites, online newsgroups, blogs, electronic forums, virtual communities, and online travel sites, for consumers to express their views or opinions regarding various issues. These opinions can help organizations like tourism to improve their products and services for their consumers. Opinion mining refers to a process of identifying emotions by applying Natural Language Processing (NLP) techniques to a pool of texts. This paper mainly focuses on mining public opinion from the hotel reviews domain. To do so, we proposed a novel technique called the Attention-Based Long Short Term Memory (Attention-LSTM) Network using a transfer learning approach. We empirically analyzed several machine learning and deep learning methods and observed our proposed technique provided an adequate performance for mining public opinion in the hotel reviews domain.展开更多
Accurate soil moisture(SM)prediction is critical for understanding hydrological processes.Physics-based(PB)models exhibit large uncertainties in SM predictions arising from uncertain parameterizations and insufficient...Accurate soil moisture(SM)prediction is critical for understanding hydrological processes.Physics-based(PB)models exhibit large uncertainties in SM predictions arising from uncertain parameterizations and insufficient representation of land-surface processes.In addition to PB models,deep learning(DL)models have been widely used in SM predictions recently.However,few pure DL models have notably high success rates due to lacking physical information.Thus,we developed hybrid models to effectively integrate the outputs of PB models into DL models to improve SM predictions.To this end,we first developed a hybrid model based on the attention mechanism to take advantage of PB models at each forecast time scale(attention model).We further built an ensemble model that combined the advantages of different hybrid schemes(ensemble model).We utilized SM forecasts from the Global Forecast System to enhance the convolutional long short-term memory(ConvLSTM)model for 1–16 days of SM predictions.The performances of the proposed hybrid models were investigated and compared with two existing hybrid models.The results showed that the attention model could leverage benefits of PB models and achieved the best predictability of drought events among the different hybrid models.Moreover,the ensemble model performed best among all hybrid models at all forecast time scales and different soil conditions.It is highlighted that the ensemble model outperformed the pure DL model over 79.5%of in situ stations for 16-day predictions.These findings suggest that our proposed hybrid models can adequately exploit the benefits of PB model outputs to aid DL models in making SM predictions.展开更多
For underwater robots in the process of performing target detection tasks,the color distortion and the uneven quality of underwater images lead to great difficulties in the feature extraction process of the model,whic...For underwater robots in the process of performing target detection tasks,the color distortion and the uneven quality of underwater images lead to great difficulties in the feature extraction process of the model,which is prone to issues like error detection,omission detection,and poor accuracy.Therefore,this paper proposed the CER-YOLOv7(CBAM-EIOU-RepVGG-YOLOv7)underwater target detection algorithm.To improve the algorithm’s capability to retain valid features from both spatial and channel perspectives during the feature extraction phase,we have added a Convolutional Block Attention Module(CBAM)to the backbone network.The Reparameterization Visual Geometry Group(RepVGG)module is inserted into the backbone to improve the training and inference capabilities.The Efficient Intersection over Union(EIoU)loss is also used as the localization loss function,which reduces the error detection rate and missed detection rate of the algorithm.The experimental results of the CER-YOLOv7 algorithm on the UPRC(Underwater Robot Prototype Competition)dataset show that the mAP(mean Average Precision)score of the algorithm is 86.1%,which is a 2.2%improvement compared to the YOLOv7.The feasibility and validity of the CER-YOLOv7 are proved through ablation and comparison experiments,and it is more suitable for underwater target detection.展开更多
基金Projects(42174170,41874145,72088101)supported by the National Natural Science Foundation of ChinaProject(CX20200228)supported by the Hunan Provincial Innovation Foundation for Postgraduate,China。
文摘Landfill leaks pose a serious threat to environmental health,risking the contamination of both groundwater and soil resources.Accurate investigation of these sites is essential for implementing effective prevention and control measures.The self-potential(SP)stands out for its sensitivity to contamination plumes,offering a solution for monitoring and detecting the movement and seepage of subsurface pollutants.However,traditional SP inversion techniques heavily rely on precise subsurface resistivity information.In this study,we propose the Attention U-Net deep learning network for rapid SP inversion.By incorporating an attention mechanism,this algorithm effectively learns the relationship between array-style SP data and the location and extent of subsurface contaminated sources.We designed a synthetic landfill model with a heterogeneous resistivity structure to assess the performance of Attention U-Net deep learning network.Additionally,we conducted further validation using a laboratory model to assess its practical applicability.The results demonstrate that the algorithm is not solely dependent on resistivity information,enabling effective locating of the source distribution,even in models with intricate subsurface structures.Our work provides a promising tool for SP data processing,enhancing the applicability of this method in the field of near-subsurface environmental monitoring.
基金supported by the Natural Science Foundation of Shandong Province,China (Grant No. ZR2021MF049)Joint Fund of Natural Science Foundation of Shandong Province (Grant Nos. ZR2022LLZ012 and ZR2021LLZ001)。
文摘Quantum error correction, a technique that relies on the principle of redundancy to encode logical information into additional qubits to better protect the system from noise, is necessary to design a viable quantum computer. For this new topological stabilizer code-XYZ^(2) code defined on the cellular lattice, it is implemented on a hexagonal lattice of qubits and it encodes the logical qubits with the help of stabilizer measurements of weight six and weight two. However topological stabilizer codes in cellular lattice quantum systems suffer from the detrimental effects of noise due to interaction with the environment. Several decoding approaches have been proposed to address this problem. Here, we propose the use of a state-attention based reinforcement learning decoder to decode XYZ^(2) codes, which enables the decoder to more accurately focus on the information related to the current decoding position, and the error correction accuracy of our reinforcement learning decoder model under the optimisation conditions can reach 83.27% under the depolarizing noise model, and we have measured thresholds of 0.18856 and 0.19043 for XYZ^(2) codes at code spacing of 3–7 and 7–11, respectively. our study provides directions and ideas for applications of decoding schemes combining reinforcement learning attention mechanisms to other topological quantum error-correcting codes.
基金This work was supported,in part,by the National Nature Science Foundation of China under Grant Numbers 61502240,61502096,61304205,61773219in part,by the Natural Science Foundation of Jiangsu Province under grant numbers BK20201136,BK20191401+1 种基金in part,by the Postgraduate Research&Practice Innovation Program of Jiangsu Province under Grant Numbers SJCX21_0363in part,by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)fund.
文摘Vehicle re-identification(ReID)aims to retrieve the target vehicle in an extensive image gallery through its appearances from various views in the cross-camera scenario.It has gradually become a core technology of intelligent transportation system.Most existing vehicle re-identification models adopt the joint learning of global and local features.However,they directly use the extracted global features,resulting in insufficient feature expression.Moreover,local features are primarily obtained through advanced annotation and complex attention mechanisms,which require additional costs.To solve this issue,a multi-feature learning model with enhanced local attention for vehicle re-identification(MFELA)is proposed in this paper.The model consists of global and local branches.The global branch utilizes both middle and highlevel semantic features of ResNet50 to enhance the global representation capability.In addition,multi-scale pooling operations are used to obtain multiscale information.While the local branch utilizes the proposed Region Batch Dropblock(RBD),which encourages the model to learn discriminative features for different local regions and simultaneously drops corresponding same areas randomly in a batch during training to enhance the attention to local regions.Then features from both branches are combined to provide a more comprehensive and distinctive feature representation.Extensive experiments on VeRi-776 and VehicleID datasets prove that our method has excellent performance.
基金Supported by Fujian Natural Science Foundation(A0110010).
文摘The setting of attention parameters plays a role in the performance of synergetic neural network based on PFAP model. This paper first analyzes the attention parameter setting algorithm based on award-penalty learning mechanism. Then, it presents an improved algorithm to overcome its drawbacks. The experimental results demonstrate that the novel algorithm is better than the original one under the same circumstances.
基金supported in part by the Natural Science Foundation of China under Grant 61972169 and U1536203in part by the National key research and developm program of China(2016QY01W0200)in part by the Major Scientic and Technological Project of Hubei Province(2018AAA068 and 2019AAA051).
文摘The majority of existing graph-network-based few-shot models focus on a node-similarity update mode.The lack of adequate information intensies the risk of overtraining.In this paper,we propose a novel Multihead Attention Graph Network to excavate discriminative relation and fulll effective information propagation.For edge update,the node-level attention is used to evaluate the similarities between the two nodes and the distributionlevel attention extracts more in-deep global relation.The cooperation between those two parts provides a discriminative and comprehensive expression for edge feature.For node update,we embrace the label-level attention to soften the noise of irrelevant nodes and optimize the update direction.Our proposed model is veried through extensive experiments on two few-shot benchmark MiniImageNet and CIFAR-FS dataset.The results suggest that our method has a strong capability of noise immunity and quick convergence.The classication accuracy outperforms most state-of-the-art approaches.
基金This work was funded by the Deanship of Scientific Research at Jouf University under grant No(DSR-2021-02-0379).
文摘Indoor localization methods can help many sectors,such as healthcare centers,smart homes,museums,warehouses,and retail malls,improve their service areas.As a result,it is crucial to look for low-cost methods that can provide exact localization in indoor locations.In this context,imagebased localization methods can play an important role in estimating both the position and the orientation of cameras regarding an object.Image-based localization faces many issues,such as image scale and rotation variance.Also,image-based localization’s accuracy and speed(latency)are two critical factors.This paper proposes an efficient 6-DoF deep-learning model for image-based localization.This model incorporates the channel attention module and the Scale PyramidModule(SPM).It not only enhances accuracy but also ensures the model’s real-time performance.In complex scenes,a channel attention module is employed to distinguish between the textures of the foregrounds and backgrounds.Our model adapted an SPM,a feature pyramid module for dealing with image scale and rotation variance issues.Furthermore,the proposed model employs two regressions(two fully connected layers),one for position and the other for orientation,which increases outcome accuracy.Experiments on standard indoor and outdoor datasets show that the proposed model has a significantly lower Mean Squared Error(MSE)for both position and orientation.On the indoor 7-Scenes dataset,the MSE for the position is reduced to 0.19 m and 6.25°for the orientation.Furthermore,on the outdoor Cambridge landmarks dataset,the MSE for the position is reduced to 0.63 m and 2.03°for the orientation.According to the findings,the proposed approach is superior and more successful than the baseline methods.
基金Supported by the National Natural Science Foundation of China under Grant 42274144 and under Grant 41974137.
文摘Seismic data interpolation,especially irregularly sampled data interpolation,is a critical task for seismic processing and subsequent interpretation.Recently,with the development of machine learning and deep learning,convolutional neural networks(CNNs)are applied for interpolating irregularly sampled seismic data.CNN based approaches can address the apparent defects of traditional interpolation methods,such as the low computational efficiency and the difficulty on parameters selection.However,current CNN based methods only consider the temporal and spatial features of irregularly sampled seismic data,which fail to consider the frequency features of seismic data,i.e.,the multi-scale features.To overcome these drawbacks,we propose a wavelet-based convolutional block attention deep learning(W-CBADL)network for irregularly sampled seismic data reconstruction.We firstly introduce the discrete wavelet transform(DWT)and the inverse wavelet transform(IWT)to the commonly used U-Net by considering the multi-scale features of irregularly sampled seismic data.Moreover,we propose to adopt the convolutional block attention module(CBAM)to precisely restore sampled seismic traces,which could apply the attention to both channel and spatial dimensions.Finally,we adopt the proposed W-CBADL model to synthetic and pre-stack field data to evaluate its validity and effectiveness.The results demonstrate that the proposed W-CBADL model could reconstruct irregularly sampled seismic data more effectively and more efficiently than the state-of-the-art contrastive CNN based models.
基金Our work was supported by the research project of Yunnan University(Grant No.2021Y274)Natural Science Foundation of China(Grant No.61862064).
文摘Online advertising has gained much attention on various platforms as a hugely lucrative market.In promoting content and advertisements in real life,the acquisition of user target actions is usually a multi-step process,such as impres-sion→click→conversion,which means the process from the delivery of the recommended item to the user’s click to the final conversion.Due to data sparsity or sample selection bias,it is difficult for the trained model to achieve the business goal of the target campaign.Multi-task learning,a classical solution to this pro-blem,aims to generalize better on the original task given several related tasks by exploiting the knowledge between tasks to share the same feature and label space.Adaptively learned task relations bring better performance to make full use of the correlation between tasks.We train a general model capable of captur-ing the relationships between various tasks on all existing active tasks from a meta-learning perspective.In addition,this paper proposes a Multi-task Attention Network(MAN)to identify commonalities and differences between tasks in the feature space.The model performance is improved by explicitly learning the stacking of task relationships in the label space.To illustrate the effectiveness of our method,experiments are conducted on Alibaba Click and Conversion Pre-diction(Ali-CCP)dataset.Experimental results show that the method outperforms the state-of-the-art multi-task learning methods.
基金supported partially by the Ministry of Science and Technology,Taiwan,under contracts MOST-110-2634-F-009-024,109-2218-E-150-002,and 109-2218-E-005-015.
文摘The recent trends in Industry 4.0 and Internet of Things have encour-aged many factory managers to improve inspection processes to achieve automa-tion and high detection rates.However,the corresponding cost results of sample tests are still used for quality control.A low-cost automated optical inspection system that can be integrated with production lines to fully inspect products with-out adjustments is introduced herein.The corresponding mechanism design enables each product to maintain afixed position and orientation during inspec-tion to accelerate the inspection process.The proposed system combines image recognition and deep learning to measure the dimensions of the thread and iden-tify its defects within 20 s,which is lower than the production-line productivity per 30 s.In addition,the system is designed to be used for monitoring production lines and equipment status.The dimensional tolerance of the proposed system reaches 0.012 mm,and a 100%accuracy is achieved in terms of the defect reso-lution.In addition,an attention-based visualization approach is utilized to verify the rationale for the use of the convolutional neural network model and identify the location of thread defects.
文摘This paper proposes a probabilistic model of object category learning in conjunction with attention-guided organized perception. This model consists of a model of attention-guided organized perception of object segments on Markov random fields and a model of learning object categories based on a probabilistic latent component analysis. In attention guided organized perception, concurrent figure-ground segmentation is performed on dynamically-formed Markov random fields around salient preattentive points and co-occurring segments are grouped in the neighborhood of selective attended segments. In object category learning, a set of classes of each object category is obtained based on the probabilistic latent component analysis with the variable number of classes from bags of features of segments extracted from images which contain the categorical objects in context and an object category is represented by a composite of object classes. Through experiments using two image data sets, it is shown that the model learns a probabilistic structure of intra-categorical composition and inter-categorical difference of object categories and achieves high performance in object category recognition.
文摘Background Video anomaly detection has always been a hot topic and has attracted increasing attention.Many of the existing methods for video anomaly detection depend on processing the entire video rather than considering only the significant context. Method This paper proposes a novel video anomaly detection method called COVAD that mainly focuses on the region of interest in the video instead of the entire video. Our proposed COVAD method is based on an autoencoded convolutional neural network and a coordinated attention mechanism,which can effectively capture meaningful objects in the video and dependencies among different objects. Relying on the existing memory-guided video frame prediction network, our algorithm can significantly predict the future motion and appearance of objects in a video more effectively. Result The proposed algorithm obtained better experimental results on multiple datasets and outperformed the baseline models considered in our analysis. Simultaneously, we provide an improved visual test that can provide pixel-level anomaly explanations.
文摘The Internet provides a large number of tools and resources, such as social media sites, online newsgroups, blogs, electronic forums, virtual communities, and online travel sites, for consumers to express their views or opinions regarding various issues. These opinions can help organizations like tourism to improve their products and services for their consumers. Opinion mining refers to a process of identifying emotions by applying Natural Language Processing (NLP) techniques to a pool of texts. This paper mainly focuses on mining public opinion from the hotel reviews domain. To do so, we proposed a novel technique called the Attention-Based Long Short Term Memory (Attention-LSTM) Network using a transfer learning approach. We empirically analyzed several machine learning and deep learning methods and observed our proposed technique provided an adequate performance for mining public opinion in the hotel reviews domain.
基金supported by the Natural Science Foundation of China(Grant Nos.42088101 and 42205149)Zhongwang WEI was supported by the Natural Science Foundation of China(Grant No.42075158)+1 种基金Wei SHANGGUAN was supported by the Natural Science Foundation of China(Grant No.41975122)Yonggen ZHANG was supported by the National Natural Science Foundation of Tianjin(Grant No.20JCQNJC01660).
文摘Accurate soil moisture(SM)prediction is critical for understanding hydrological processes.Physics-based(PB)models exhibit large uncertainties in SM predictions arising from uncertain parameterizations and insufficient representation of land-surface processes.In addition to PB models,deep learning(DL)models have been widely used in SM predictions recently.However,few pure DL models have notably high success rates due to lacking physical information.Thus,we developed hybrid models to effectively integrate the outputs of PB models into DL models to improve SM predictions.To this end,we first developed a hybrid model based on the attention mechanism to take advantage of PB models at each forecast time scale(attention model).We further built an ensemble model that combined the advantages of different hybrid schemes(ensemble model).We utilized SM forecasts from the Global Forecast System to enhance the convolutional long short-term memory(ConvLSTM)model for 1–16 days of SM predictions.The performances of the proposed hybrid models were investigated and compared with two existing hybrid models.The results showed that the attention model could leverage benefits of PB models and achieved the best predictability of drought events among the different hybrid models.Moreover,the ensemble model performed best among all hybrid models at all forecast time scales and different soil conditions.It is highlighted that the ensemble model outperformed the pure DL model over 79.5%of in situ stations for 16-day predictions.These findings suggest that our proposed hybrid models can adequately exploit the benefits of PB model outputs to aid DL models in making SM predictions.
基金Scientific Research Fund of Liaoning Provincial Education Department(No.JGLX2021030):Research on Vision-Based Intelligent Perception Technology for the Survival of Benthic Organisms.
文摘For underwater robots in the process of performing target detection tasks,the color distortion and the uneven quality of underwater images lead to great difficulties in the feature extraction process of the model,which is prone to issues like error detection,omission detection,and poor accuracy.Therefore,this paper proposed the CER-YOLOv7(CBAM-EIOU-RepVGG-YOLOv7)underwater target detection algorithm.To improve the algorithm’s capability to retain valid features from both spatial and channel perspectives during the feature extraction phase,we have added a Convolutional Block Attention Module(CBAM)to the backbone network.The Reparameterization Visual Geometry Group(RepVGG)module is inserted into the backbone to improve the training and inference capabilities.The Efficient Intersection over Union(EIoU)loss is also used as the localization loss function,which reduces the error detection rate and missed detection rate of the algorithm.The experimental results of the CER-YOLOv7 algorithm on the UPRC(Underwater Robot Prototype Competition)dataset show that the mAP(mean Average Precision)score of the algorithm is 86.1%,which is a 2.2%improvement compared to the YOLOv7.The feasibility and validity of the CER-YOLOv7 are proved through ablation and comparison experiments,and it is more suitable for underwater target detection.