To analyze the attitude errors of vertical docking test system of small satellite,the static error and kinematic error of test system are considered.The working principle of test system and coordinate of actuator are ...To analyze the attitude errors of vertical docking test system of small satellite,the static error and kinematic error of test system are considered.The working principle of test system and coordinate of actuator are introduced.The model of friction torque on the joints and torque on docking mechanism are built.Dynamics equation of actuator is built by the Lagrange equation and the Nielsen equation.Under the condition of 24 different angle groups,the calculation of dynamics equation is built by using MATLAB/SIMULINK platform and the kinematic errors of actuator are obtained.The attitude error models of docking mechanism are built.Results shows that the main angle error sources of yaw,row,pitch are not identical.The attitude error of yaw angle can be decreased by compensating the angle error around xaxis.The attitude error of row angle mainly originates in the system error,and it can be eliminated by adjusting non-orthogonal degree.展开更多
As residual attitude errors are likely to affect the synthetic aperture radar (SAR) imaging, this paper presents a SAR motioncompensation algorithm based on the correction of residual attitude errors. The existing met...As residual attitude errors are likely to affect the synthetic aperture radar (SAR) imaging, this paper presents a SAR motioncompensation algorithm based on the correction of residual attitude errors. The existing methods all use the antenna stableplatform to correct the attitude errors, and then compensate the trajectory deviations in the following imaging process. Besidescompensating the trajectory deviations, the modified method of this paper also considers the influence of residual attitude er-rors on the SAR imaging, and can compensate both the trajectory deviations and the residual attitude errors. Compared withthe existing methods, the modified method in this paper can more precisely compensate the imperfect motion on the SAR im-aging, especially good for the SAR system with a small platform, near operating distance and a narrow antenna beam. Such asystem causes severe residual attitude errors and needs to consider the influence of antenna beam pointing errors on the imag-ing. The validity of the modified method presented by this paper is demonstrated by the result of the experiment.展开更多
There are two attitude estimation algorithms based on the different representations of attitude errors when modified Rodrigues parameters are applied to attitude estimation. The first is multiplicative error attitude ...There are two attitude estimation algorithms based on the different representations of attitude errors when modified Rodrigues parameters are applied to attitude estimation. The first is multiplicative error attitude estimator (MEAE), whose attitude error is expressed by the modified Rodrigues parameters representing the rotation from the estimated to the true attitude. The second is subtractive error attitude estimator (SEAE), whose attitude error is expressed by the arithmetic difference between the true and the estimated attitudes. It is proved that the two algorithms are equivalent in the case of small attitude errors. It is possible to describe rotation without encountering singularity by switching between the modified Rodrigues parameters and their shadow parameters. The attitude parameter switching does not bring disturbance to MEAE, but it does to SEAE. This article introduces a modification to eliminate the disturbance on SEAE, and simulation results demonstrate the efficacy of the presented algorithm.展开更多
Based on an analysis of the relative shaft-to-hole position and attiude errors, as well as of the mechanics and Kinematics in the process of automatic assembly of industrial robots, the paper studies the principle of ...Based on an analysis of the relative shaft-to-hole position and attiude errors, as well as of the mechanics and Kinematics in the process of automatic assembly of industrial robots, the paper studies the principle of construction of dynamic wrists. Type I-3 and Ⅱ-6 dynamic compliant wrists have been designed and made. Prblems in the production of compliant elements and the connection between compliant elements and wrists were also solved. A study on the results of tests of the function of two kinds of dynamic compliant wrists shows that the dynamic compliant wrist's compliancy function can be improved by adding metallic materials having higher longitudinal and transverse rigidity into the softer elstomer. And the design Principle is proved to be feasible and practicable. It can be expected that the use of dynamic compliant wrist will greatly lower the technical requirements of the shaft-hole assembly and the requirements in the resetting accuracy.展开更多
The low-frequency periodic error of star tracker is one of the most critical problems for high-accuracy satellite attitude determination.In this paper an approach is proposed to identify and compensate the low-frequen...The low-frequency periodic error of star tracker is one of the most critical problems for high-accuracy satellite attitude determination.In this paper an approach is proposed to identify and compensate the low-frequency periodic error for star tracker in attitude measurement.The analytical expression between the estimated gyro drift and the low-frequency periodic error of star tracker is derived firstly.And then the low-frequency periodic error,which can be expressed by Fourier series,is identified by the frequency spectrum of the estimated gyro drift according to the solution of the first step.Furthermore,the compensated model of the low-frequency periodic error is established based on the identified parameters to improve the attitude determination accuracy.Finally,promising simulated experimental results demonstrate the validity and effectiveness of the proposed method.The periodic error for attitude determination is eliminated basically and the estimation precision is improved greatly.展开更多
Two types of sensitivities are proposed for stat- ically stable sailcrafts. One type is the sensitivities of solar-radiation-pressure force with respect to position of the center of mass, and the other type is the sen...Two types of sensitivities are proposed for stat- ically stable sailcrafts. One type is the sensitivities of solar-radiation-pressure force with respect to position of the center of mass, and the other type is the sensitivities of solar-radiation-pressure force with respect to attitude. The two types of sensitivities represent how the solar-radiation- pressure force changes with the position of mass center and the attitude. Sailcrafts with larger sensitivities undergo larger error of the solar-radiation-pressure force, leading to larger orbit error, as demonstrated by simulation. Then as a case study, detailed formulas are derived to calculate the sensi- tivities for sailcrafts with four triangular sails. According to these formulas, in order to reduce both types of sensitivities, the angle between opposed sails should not be too large, and the center of mass should be as close to the axis of symmetry of the four sails as possible and as far away from the center of pressure of the sailcraft as possible.展开更多
基金supported by National Natural Science Foundation of China(No.51375125)the Foundation for Distinguished Young Scholars of Heilongjiang Province,China(No.JC201111)the Program for New Century Excellent Talents in University(No.NCET10-0146)
文摘To analyze the attitude errors of vertical docking test system of small satellite,the static error and kinematic error of test system are considered.The working principle of test system and coordinate of actuator are introduced.The model of friction torque on the joints and torque on docking mechanism are built.Dynamics equation of actuator is built by the Lagrange equation and the Nielsen equation.Under the condition of 24 different angle groups,the calculation of dynamics equation is built by using MATLAB/SIMULINK platform and the kinematic errors of actuator are obtained.The attitude error models of docking mechanism are built.Results shows that the main angle error sources of yaw,row,pitch are not identical.The attitude error of yaw angle can be decreased by compensating the angle error around xaxis.The attitude error of row angle mainly originates in the system error,and it can be eliminated by adjusting non-orthogonal degree.
基金supported by the Knowledge Innovative Program of the Chinese Academy of Sciences (Grant No. 053Z170138)
文摘As residual attitude errors are likely to affect the synthetic aperture radar (SAR) imaging, this paper presents a SAR motioncompensation algorithm based on the correction of residual attitude errors. The existing methods all use the antenna stableplatform to correct the attitude errors, and then compensate the trajectory deviations in the following imaging process. Besidescompensating the trajectory deviations, the modified method of this paper also considers the influence of residual attitude er-rors on the SAR imaging, and can compensate both the trajectory deviations and the residual attitude errors. Compared withthe existing methods, the modified method in this paper can more precisely compensate the imperfect motion on the SAR im-aging, especially good for the SAR system with a small platform, near operating distance and a narrow antenna beam. Such asystem causes severe residual attitude errors and needs to consider the influence of antenna beam pointing errors on the imag-ing. The validity of the modified method presented by this paper is demonstrated by the result of the experiment.
基金National Natural Science Foundation of China (10572114)
文摘There are two attitude estimation algorithms based on the different representations of attitude errors when modified Rodrigues parameters are applied to attitude estimation. The first is multiplicative error attitude estimator (MEAE), whose attitude error is expressed by the modified Rodrigues parameters representing the rotation from the estimated to the true attitude. The second is subtractive error attitude estimator (SEAE), whose attitude error is expressed by the arithmetic difference between the true and the estimated attitudes. It is proved that the two algorithms are equivalent in the case of small attitude errors. It is possible to describe rotation without encountering singularity by switching between the modified Rodrigues parameters and their shadow parameters. The attitude parameter switching does not bring disturbance to MEAE, but it does to SEAE. This article introduces a modification to eliminate the disturbance on SEAE, and simulation results demonstrate the efficacy of the presented algorithm.
文摘Based on an analysis of the relative shaft-to-hole position and attiude errors, as well as of the mechanics and Kinematics in the process of automatic assembly of industrial robots, the paper studies the principle of construction of dynamic wrists. Type I-3 and Ⅱ-6 dynamic compliant wrists have been designed and made. Prblems in the production of compliant elements and the connection between compliant elements and wrists were also solved. A study on the results of tests of the function of two kinds of dynamic compliant wrists shows that the dynamic compliant wrist's compliancy function can be improved by adding metallic materials having higher longitudinal and transverse rigidity into the softer elstomer. And the design Principle is proved to be feasible and practicable. It can be expected that the use of dynamic compliant wrist will greatly lower the technical requirements of the shaft-hole assembly and the requirements in the resetting accuracy.
基金National Natural Science Foundation of China(61004081,11126033)School Advanced Research Foundation of National University of Defense Technology (JC11-02-22)
文摘The low-frequency periodic error of star tracker is one of the most critical problems for high-accuracy satellite attitude determination.In this paper an approach is proposed to identify and compensate the low-frequency periodic error for star tracker in attitude measurement.The analytical expression between the estimated gyro drift and the low-frequency periodic error of star tracker is derived firstly.And then the low-frequency periodic error,which can be expressed by Fourier series,is identified by the frequency spectrum of the estimated gyro drift according to the solution of the first step.Furthermore,the compensated model of the low-frequency periodic error is established based on the identified parameters to improve the attitude determination accuracy.Finally,promising simulated experimental results demonstrate the validity and effectiveness of the proposed method.The periodic error for attitude determination is eliminated basically and the estimation precision is improved greatly.
基金supported by the National Natural Science Foundation of China (10832004)China Postdoctoral Science Foundation (023200006)
文摘Two types of sensitivities are proposed for stat- ically stable sailcrafts. One type is the sensitivities of solar-radiation-pressure force with respect to position of the center of mass, and the other type is the sensitivities of solar-radiation-pressure force with respect to attitude. The two types of sensitivities represent how the solar-radiation- pressure force changes with the position of mass center and the attitude. Sailcrafts with larger sensitivities undergo larger error of the solar-radiation-pressure force, leading to larger orbit error, as demonstrated by simulation. Then as a case study, detailed formulas are derived to calculate the sensi- tivities for sailcrafts with four triangular sails. According to these formulas, in order to reduce both types of sensitivities, the angle between opposed sails should not be too large, and the center of mass should be as close to the axis of symmetry of the four sails as possible and as far away from the center of pressure of the sailcraft as possible.