Discusses how to transfer an attitude tracking problem with time variable boundary condition into a fixed boundary problem by means of line of sight coordinate, rotational quaternion and relative error feed back signa...Discusses how to transfer an attitude tracking problem with time variable boundary condition into a fixed boundary problem by means of line of sight coordinate, rotational quaternion and relative error feed back signals, and the control law of attitude tracking designed based on the quasi Euler signals and describes the simulation of a forewarning satellite monitoring a low orbital spacecraft to prove the correctness of the design method.展开更多
The present paper investigates the chaotic attitude dynamics and reorientation maneuver for completely viscous liquid-filled spacecraft with flexible appendage. All of the equations of motion are derived by using Lagr...The present paper investigates the chaotic attitude dynamics and reorientation maneuver for completely viscous liquid-filled spacecraft with flexible appendage. All of the equations of motion are derived by using Lagrangian mechanics and then transformed into a form consisting of an unperturbed part plus perturbed terms so that the system's nonlinear characteristics can be exploited in phase space. Emphases are laid on the chaotic attitude dynamics produced from certain sets of physical parameter values of the spacecraft when energy dissipation acts to derive the body from minor to major axis spin. Numerical solutions of these equations show that the attitude dynamics of liquid-filled flexible spacecraft possesses characteristics common to random, non- periodic solutions and chaos, and it is demonstrated that the desired reorientation maneuver is guaranteed by using a pair of thruster impulses. The control strategy for reorientation maneuver is designed and the numerical simulation results are presented for both the uncontrolled and controlled spins transition.展开更多
Attitude maneuver of liquid-filled spacecraft with an appendage as a cantilever beam by momentum wheel is studied. The dynamic equations are derived by conserva- tion of angular momentum and force equilibrium principl...Attitude maneuver of liquid-filled spacecraft with an appendage as a cantilever beam by momentum wheel is studied. The dynamic equations are derived by conserva- tion of angular momentum and force equilibrium principle. A feedback control strategy of the momentum wheel is ap- plied for the attitude maneuver. The residual nutation of the spacecraft in maneuver process changes with some chosen parameters, such as steady state time, locations of the liq- uid container and the appendage, and appendage parame- ters. The results indicate that locations in the second and fourth quadrants of the body-fixed coordinate system and the second quadrant of the wall of the main body are better choices for.placing the liquid containers and the appendage than other locations if they can be placed randomly. Higher density and thicker cross section are better for lowering the residual nutation if they can be changed. Light appendage can be modeled as a rigid body, which results in a larger residual nutation than a flexible model though. The resid- ual nutation decreases with increasing absolute value of the initial sloshing angular height.展开更多
An adaptive variable structure control method based on backstepping is proposed for the attitude maneuver problem of rigid spacecraft with reaction wheel dynamics in the presence of uncertain inertia matrix and extern...An adaptive variable structure control method based on backstepping is proposed for the attitude maneuver problem of rigid spacecraft with reaction wheel dynamics in the presence of uncertain inertia matrix and external disturbances. The proposed control approach is a combination of the backstepping and the adaptive variable structure control. The cascaded structure of the attitude maneuver control system with reaction wheel dynamics gives the advantage for applying the backstepping method to construct Lyapunov functions. The robust stability to external disturbances and parametric uncertainty is guaranteed by the adaptive variable structure control. To validate the proposed control algorithm, numerical simulations using the proposed approach are performed for the attitude maneuver mission of rigid spacecraft with a configuration consisting of four reaction wheels for actuator and three magnetorquers for momentum unloading. Simulation results verify the effectiveness of the proposed control algorithm.展开更多
A robust adaptive control scheme is proposed for attitude maneuver and vibration suppression of flexible spacecraft in situations where parametric uncertainties,external disturbances,unmeasured elastic vibration and i...A robust adaptive control scheme is proposed for attitude maneuver and vibration suppression of flexible spacecraft in situations where parametric uncertainties,external disturbances,unmeasured elastic vibration and input saturation constraints exist. The controller does not need the knowledge of modal variables but the estimates of modal variables provided by appropriate dynamics of the controller. The requirements to know the system parameters and the bound of the external disturbance in advance are also eliminated by adaptive updating technique. Moreover,an auxiliary design system is constructed to analyze and compensate the effect of input saturation,and the state of the auxiliary design system is applied to the procedure of control design and stability analysis. Within the framework of the Lyapunov theory,stabilization and disturbance rejection of the overall system are ensured. Finally,simulations are conducted to study the effectiveness of the proposed control scheme,and simulation results demonstrate that the precise attitude control and vibration suppression are successfully achieved.展开更多
A robust adaptive control scheme with prescribed performance is proposed for attitude maneuver and vibration suppression of flexible spacecraft,in which the parametric uncertainty,external disturbances and unmeasured ...A robust adaptive control scheme with prescribed performance is proposed for attitude maneuver and vibration suppression of flexible spacecraft,in which the parametric uncertainty,external disturbances and unmeasured elastic vibration are taken into account simultaneously.On the basis of the prescribed performance control(PPC)theory,the prescribed steady state and transient performance for the attitude tracking error can be guaranteed through the stabilization of the transformed system.This controller does not need the knowledge of modal variables.The absence of measurements of these variables is compensated by appropriate dynamics of the controller which supplies their estimates.The method of sliding mode differentiator is introduced to overcome the problem of explosion of complexity inherent in traditional backstepping design.In addition,the requirements of knowing the system parameters and the unknown bound of the lumped uncertainty,including external disturbance and the estimate error of sliding mode differentiator,have been eliminated by using adaptive updating technique.Within the framework of Lyapunov theory,the stability of the transformed system is obtained.Finally,numerical simulations are carried out to verify the effectiveness of the proposed control scheme.展开更多
A dual-stage control system design method is presented for the three-axis-rotational maneuver and vibration stabilization of a spacecraft with flexible appendages embedded with piezoceramics as sensor and actuator. In...A dual-stage control system design method is presented for the three-axis-rotational maneuver and vibration stabilization of a spacecraft with flexible appendages embedded with piezoceramics as sensor and actuator. In this design approach, the attitude control and the vibration suppression sub-systems are designed separately using the lower order model. The design of attitude controller is based on the variable structure control (VSC) theory leading to a discontinuous control law. This controller accomplishes asymptotic attitude maneuvering in the closed-loop system and is insensitive to the interaction of elastic modes and uncertainty in the system. To actively suppress the flexible vibrations, the modal velocity feedback control method is presented by using piezoelectric materials as additional sensor and actuator bonded on the surface of the flexible appendages. In addition, a special configuration of actuators for three-axis attitude control is also investigated: the pitch attitude controlled by a momentum wheel, and the roll/yaw control achieved by on-off thrusters, which is modulated by pulse width pulse frequency modulation technique to construct the proper control torque history. Numerical simulations performed show that the rotational maneuver and vibration suppression are accomplished in spite of the presence of disturbance torque and parameter uncertainty.展开更多
A generalized scheme based on the sliding mode and component synthesis vibration suppression (CSVS) method has been proposed for the rotational maneuver and vibration suppression of an orbiting spacecraft with flexibl...A generalized scheme based on the sliding mode and component synthesis vibration suppression (CSVS) method has been proposed for the rotational maneuver and vibration suppression of an orbiting spacecraft with flexible appendages. The proposed control design process is twofold: design of the attitude controller followed by the design of a flexible vibration attenuator. The attitude controller using only the attitude and the rate information for the flexible spacecraft (FS) is designed to serve two purposes: it forces the attitude motion onto a pre-selected sliding surface and then guides it to the state space origin. The shaped command input controller based on the CSVS method is designed for the reduction of the flexible mode vibration, which only requires information about the natural frequency and damping of the closed system. This information is used to discretize the input so that minimum energy is injected via the controller to the flexible modes of the spacecraft. Additionally, to extend the CSVS method to the system with the on-off actuators, the pulse-width pulse-frequency (PWPF) modulation is introduced to control the thruster firing and integrated with the CSVS method. PWPF modulation is a control method that provides pseudo-linear operation for an on-off thruster. The proposed control strategy has been implemented on a FS, which is a hub with symmetric cantilever flexible beam appendages and can undergo a single axis rotation. The results have been proven the potential of this technique to control FS.展开更多
The adaptive fuzzy control is combined with input-output linearization control to constitute the hybrid controller. The control method is then applied to the attitude maneuver control of the flexible satellite. The ba...The adaptive fuzzy control is combined with input-output linearization control to constitute the hybrid controller. The control method is then applied to the attitude maneuver control of the flexible satellite. The basic control structure is given. The rules of the controller parameter selection, which guarantee the attitude stabilization of the satellite with parameter uncertainties, have been analyzed. Simulation results show that the precise attitude control is accomplished in spite of the uncertainty in the system.展开更多
An eigenaxis maneuver strategy with global robustness is studied for large angle attitude maneuver of rigid spacecraft. A sliding mode attitude control algorithm with an exponential time-varying sliding surface is des...An eigenaxis maneuver strategy with global robustness is studied for large angle attitude maneuver of rigid spacecraft. A sliding mode attitude control algorithm with an exponential time-varying sliding surface is designed, which guarantees the sliding mode occurrence at the beginning and eliminates the reaching phase of time-invariant sliding mode control. The proposed control law is global robust against matched external disturbances and system uncertainties, and ensures the eigenaxis rotation in the presence of disturbances and parametric uncertainties. The stability of the control law and the existence of global siding mode are proved by Lyapunov method. Furthermore, the system states can be fully predicted by the analytical solution of state equations, which indicates that the attitude error does not exhibit any overshoots and the system has a good dynamic response. A control torque command regulator is introduced to ensure the eigenaxis rotation under the actuator saturation. Finally, a numerical simulation is employed to illustrate the advantages of the proposed control law.展开更多
为提高敏捷挠性航天器在轨连续机动的快速性和高稳定性,应用变速控制力矩陀螺(variable speed control moment gyroscopes,VSCMGs)作为姿态控制执行机构,提出了一种将观测器与自适应控制结合的姿态控制律与VSCMGs复合操纵律。考虑到机...为提高敏捷挠性航天器在轨连续机动的快速性和高稳定性,应用变速控制力矩陀螺(variable speed control moment gyroscopes,VSCMGs)作为姿态控制执行机构,提出了一种将观测器与自适应控制结合的姿态控制律与VSCMGs复合操纵律。考虑到机动过程中挠性模态及精确惯量不可知,采用模态观测器和转动惯量估计器对不可测的状态或参数进行辨识,辨识结果用于精确估计前馈补偿力矩,利用Lyapunov分析方法证明了闭环控制系统的稳定性。鉴于VSCMGs实际使用的力矩分配能力、避奇异能力、轮速平衡能力与末态框架角定位能力,分别设计了加权伪逆操纵律与3种对应的零运动。基于雅可比矩阵条件数提出了末态框架角的优选方法,给出了VSCMGs零运动在机动过程不同阶段的部署方案。结果表明:通过连续姿态机动数值仿真验证了所提算法的有效性;VSCMGs在连续机动过程中平滑切换模式,在不同的机动阶段实现了相应功能。模态观测值和惯量估计值在多次机动后收敛至真值附近,经过参数辨识后的控制器使航天器在机动末端更快更稳地达到指向精度要求。展开更多
A fault tolerant control (FTC) design technique against actuator stuck faults is investigated using integral-type sliding mode control (ISMC) with application to spacecraft attitude maneuvering control system. The...A fault tolerant control (FTC) design technique against actuator stuck faults is investigated using integral-type sliding mode control (ISMC) with application to spacecraft attitude maneuvering control system. The principle of the proposed FTC scheme is to design an integral-type sliding mode attitude controller using on-line parameter adaptive updating law to compensate for the effects of stuck actuators. This adaptive law also provides both the estimates of the system parameters and external disturbances such that a prior knowledge of the spacecraft inertia or boundedness of disturbances is not required. Moreover, by including the integral feedback term, the designed controller can not only tolerate actuator stuck faults, but also compensate the disturbances with constant components. For the synthesis of controller, the fault time, patterns and values are unknown in advance, as motivated from a practical spacecraft control application. Complete stability and performance analysis are presented and illustrative simulation results of application to a spacecraft show that high precise attitude control with zero steady-error is successfully achieved using various scenarios of stuck failures in actuators.展开更多
A current statistical model for maneuvering acceleration using an adaptive extended Kalman filter(CS-MAEKF) algorithm is proposed to solve problems existing in conventional extended Kalman filters such as large esti...A current statistical model for maneuvering acceleration using an adaptive extended Kalman filter(CS-MAEKF) algorithm is proposed to solve problems existing in conventional extended Kalman filters such as large estimation error and divergent tendencies in the presence of continuous maneuvering acceleration. A membership function is introduced in this algorithm to adaptively modify the upper and lower limits of loitering vehicles' maneuvering acceleration and for realtime adjustment of maneuvering acceleration variance. This allows the algorithm to have superior static and dynamic performance for loitering vehicles undergoing different maneuvers. Digital simulations and dynamic flight testing show that the yaw angle accuracy of the algorithm is 30% better than conventional algorithms, and pitch and roll angle calculation precision is improved by 60%.The mean square deviation of heading and attitude angle error during dynamic flight is less than3.05°. Experimental results show that CS-MAEKF meets the application requirements of miniature loitering vehicles.展开更多
In this paper, the chaotic dynamics in an attitude transition maneuver of a slosh-spacecraft coupled with flexible appendage in going from minor axis to major axis spin under the influence of dissipative effects due t...In this paper, the chaotic dynamics in an attitude transition maneuver of a slosh-spacecraft coupled with flexible appendage in going from minor axis to major axis spin under the influence of dissipative effects due to fuel slosh and a small flexible appendage constrained to only torsional vibration is investigated. The slosh-spacecraft coupled with flexible appendage in attitude maneuver carrying a sloshing liquid is considered as multi-body system with the sloshing motion modeled as a spherical pendulum. The focus in this paper is that the dynamics of the liquid and flexible appendage vibration are coupled. The equations of motion are derived and transformed into a form suitable for the application of Melnikov’s method. Melnikov’s integral is used to predict the transversal intersections of the stable and unstable manifolds for the perturbed system. An analytical criterion for chaotic motion is derived in terms of system parameters. This criterion is evaluated for its significance to the design of spacecraft. The dependence of the onset of chaos on quantities such as body shape and magnitude of damping values, fuel fraction and torsional vibration frequency of flexible appendage are investigated. In addition, we show that a spacecraft carrying a sloshing liquid, after passive reorientation maneuver, will end up with periodic limit motion other than a final major axis spin because of the intrinsic non-linearity of fuel slosh. Furthermore, an extensive numerical simulation is carried out to validate the Melnikov’s analytical result.展开更多
A parallel configuration using two 3-degree-of-freedom(3-DOF) spherical electromagnetic momentum exchange actuators is investigated for large angle spacecraft attitude maneuvers.First, the full dynamic equations of ...A parallel configuration using two 3-degree-of-freedom(3-DOF) spherical electromagnetic momentum exchange actuators is investigated for large angle spacecraft attitude maneuvers.First, the full dynamic equations of motion for the spacecraft system are derived by the NewtonEuler method. To facilitate computation, virtual gimbal coordinate frames are established. Second,a nonlinear control law in terms of quaternions is developed via backstepping method. The proposed control law compensates the coupling torques arising from the spacecraft rotation, and is robust against the external disturbances. Then, the singularity problem is analyzed. To avoid singularities, a modified weighed Moore-Pseudo inverse velocity steering law based on null motion is proposed. The weighted matrices are carefully designed to switch the actuators and redistribute the control torques. The null motion is used to reorient the rotor away from the tilt angle saturation state. Finally, numerical simulations of rest-to-rest maneuvers are performed to validate the effectiveness of the proposed method.展开更多
基金SponsoredbyFundationofNationalNaturalScienceGrant (No .19782 0 0 2 )
文摘Discusses how to transfer an attitude tracking problem with time variable boundary condition into a fixed boundary problem by means of line of sight coordinate, rotational quaternion and relative error feed back signals, and the control law of attitude tracking designed based on the quasi Euler signals and describes the simulation of a forewarning satellite monitoring a low orbital spacecraft to prove the correctness of the design method.
基金supported by the National Natural Science Foundation of China (10572022, 10772026)
文摘The present paper investigates the chaotic attitude dynamics and reorientation maneuver for completely viscous liquid-filled spacecraft with flexible appendage. All of the equations of motion are derived by using Lagrangian mechanics and then transformed into a form consisting of an unperturbed part plus perturbed terms so that the system's nonlinear characteristics can be exploited in phase space. Emphases are laid on the chaotic attitude dynamics produced from certain sets of physical parameter values of the spacecraft when energy dissipation acts to derive the body from minor to major axis spin. Numerical solutions of these equations show that the attitude dynamics of liquid-filled flexible spacecraft possesses characteristics common to random, non- periodic solutions and chaos, and it is demonstrated that the desired reorientation maneuver is guaranteed by using a pair of thruster impulses. The control strategy for reorientation maneuver is designed and the numerical simulation results are presented for both the uncontrolled and controlled spins transition.
基金supported by the National Natural Science Foundation of China (11072030)
文摘Attitude maneuver of liquid-filled spacecraft with an appendage as a cantilever beam by momentum wheel is studied. The dynamic equations are derived by conserva- tion of angular momentum and force equilibrium principle. A feedback control strategy of the momentum wheel is ap- plied for the attitude maneuver. The residual nutation of the spacecraft in maneuver process changes with some chosen parameters, such as steady state time, locations of the liq- uid container and the appendage, and appendage parame- ters. The results indicate that locations in the second and fourth quadrants of the body-fixed coordinate system and the second quadrant of the wall of the main body are better choices for.placing the liquid containers and the appendage than other locations if they can be placed randomly. Higher density and thicker cross section are better for lowering the residual nutation if they can be changed. Light appendage can be modeled as a rigid body, which results in a larger residual nutation than a flexible model though. The resid- ual nutation decreases with increasing absolute value of the initial sloshing angular height.
基金Sponsored by the National Natural Science Foundation of China(Grant No.60674101)the Research Fund for the Doctoral Program of Higher Educa-tion of China(Grant No.20050213010)
文摘An adaptive variable structure control method based on backstepping is proposed for the attitude maneuver problem of rigid spacecraft with reaction wheel dynamics in the presence of uncertain inertia matrix and external disturbances. The proposed control approach is a combination of the backstepping and the adaptive variable structure control. The cascaded structure of the attitude maneuver control system with reaction wheel dynamics gives the advantage for applying the backstepping method to construct Lyapunov functions. The robust stability to external disturbances and parametric uncertainty is guaranteed by the adaptive variable structure control. To validate the proposed control algorithm, numerical simulations using the proposed approach are performed for the attitude maneuver mission of rigid spacecraft with a configuration consisting of four reaction wheels for actuator and three magnetorquers for momentum unloading. Simulation results verify the effectiveness of the proposed control algorithm.
文摘A robust adaptive control scheme is proposed for attitude maneuver and vibration suppression of flexible spacecraft in situations where parametric uncertainties,external disturbances,unmeasured elastic vibration and input saturation constraints exist. The controller does not need the knowledge of modal variables but the estimates of modal variables provided by appropriate dynamics of the controller. The requirements to know the system parameters and the bound of the external disturbance in advance are also eliminated by adaptive updating technique. Moreover,an auxiliary design system is constructed to analyze and compensate the effect of input saturation,and the state of the auxiliary design system is applied to the procedure of control design and stability analysis. Within the framework of the Lyapunov theory,stabilization and disturbance rejection of the overall system are ensured. Finally,simulations are conducted to study the effectiveness of the proposed control scheme,and simulation results demonstrate that the precise attitude control and vibration suppression are successfully achieved.
文摘A robust adaptive control scheme with prescribed performance is proposed for attitude maneuver and vibration suppression of flexible spacecraft,in which the parametric uncertainty,external disturbances and unmeasured elastic vibration are taken into account simultaneously.On the basis of the prescribed performance control(PPC)theory,the prescribed steady state and transient performance for the attitude tracking error can be guaranteed through the stabilization of the transformed system.This controller does not need the knowledge of modal variables.The absence of measurements of these variables is compensated by appropriate dynamics of the controller which supplies their estimates.The method of sliding mode differentiator is introduced to overcome the problem of explosion of complexity inherent in traditional backstepping design.In addition,the requirements of knowing the system parameters and the unknown bound of the lumped uncertainty,including external disturbance and the estimate error of sliding mode differentiator,have been eliminated by using adaptive updating technique.Within the framework of Lyapunov theory,the stability of the transformed system is obtained.Finally,numerical simulations are carried out to verify the effectiveness of the proposed control scheme.
基金Sponsored by the National Natural Science Foundation of China (Grant No.60774062)Research Fund for the Doctoral Program of Higher Education of China(Grant No.20070213061)Young Excellent Talents in Harbin Institute of Technology (Grant No.HITQNJS.2007.001)
文摘A dual-stage control system design method is presented for the three-axis-rotational maneuver and vibration stabilization of a spacecraft with flexible appendages embedded with piezoceramics as sensor and actuator. In this design approach, the attitude control and the vibration suppression sub-systems are designed separately using the lower order model. The design of attitude controller is based on the variable structure control (VSC) theory leading to a discontinuous control law. This controller accomplishes asymptotic attitude maneuvering in the closed-loop system and is insensitive to the interaction of elastic modes and uncertainty in the system. To actively suppress the flexible vibrations, the modal velocity feedback control method is presented by using piezoelectric materials as additional sensor and actuator bonded on the surface of the flexible appendages. In addition, a special configuration of actuators for three-axis attitude control is also investigated: the pitch attitude controlled by a momentum wheel, and the roll/yaw control achieved by on-off thrusters, which is modulated by pulse width pulse frequency modulation technique to construct the proper control torque history. Numerical simulations performed show that the rotational maneuver and vibration suppression are accomplished in spite of the presence of disturbance torque and parameter uncertainty.
文摘A generalized scheme based on the sliding mode and component synthesis vibration suppression (CSVS) method has been proposed for the rotational maneuver and vibration suppression of an orbiting spacecraft with flexible appendages. The proposed control design process is twofold: design of the attitude controller followed by the design of a flexible vibration attenuator. The attitude controller using only the attitude and the rate information for the flexible spacecraft (FS) is designed to serve two purposes: it forces the attitude motion onto a pre-selected sliding surface and then guides it to the state space origin. The shaped command input controller based on the CSVS method is designed for the reduction of the flexible mode vibration, which only requires information about the natural frequency and damping of the closed system. This information is used to discretize the input so that minimum energy is injected via the controller to the flexible modes of the spacecraft. Additionally, to extend the CSVS method to the system with the on-off actuators, the pulse-width pulse-frequency (PWPF) modulation is introduced to control the thruster firing and integrated with the CSVS method. PWPF modulation is a control method that provides pseudo-linear operation for an on-off thruster. The proposed control strategy has been implemented on a FS, which is a hub with symmetric cantilever flexible beam appendages and can undergo a single axis rotation. The results have been proven the potential of this technique to control FS.
文摘The adaptive fuzzy control is combined with input-output linearization control to constitute the hybrid controller. The control method is then applied to the attitude maneuver control of the flexible satellite. The basic control structure is given. The rules of the controller parameter selection, which guarantee the attitude stabilization of the satellite with parameter uncertainties, have been analyzed. Simulation results show that the precise attitude control is accomplished in spite of the uncertainty in the system.
基金National Natural Science Foundation of China (10872030)
文摘An eigenaxis maneuver strategy with global robustness is studied for large angle attitude maneuver of rigid spacecraft. A sliding mode attitude control algorithm with an exponential time-varying sliding surface is designed, which guarantees the sliding mode occurrence at the beginning and eliminates the reaching phase of time-invariant sliding mode control. The proposed control law is global robust against matched external disturbances and system uncertainties, and ensures the eigenaxis rotation in the presence of disturbances and parametric uncertainties. The stability of the control law and the existence of global siding mode are proved by Lyapunov method. Furthermore, the system states can be fully predicted by the analytical solution of state equations, which indicates that the attitude error does not exhibit any overshoots and the system has a good dynamic response. A control torque command regulator is introduced to ensure the eigenaxis rotation under the actuator saturation. Finally, a numerical simulation is employed to illustrate the advantages of the proposed control law.
文摘为提高敏捷挠性航天器在轨连续机动的快速性和高稳定性,应用变速控制力矩陀螺(variable speed control moment gyroscopes,VSCMGs)作为姿态控制执行机构,提出了一种将观测器与自适应控制结合的姿态控制律与VSCMGs复合操纵律。考虑到机动过程中挠性模态及精确惯量不可知,采用模态观测器和转动惯量估计器对不可测的状态或参数进行辨识,辨识结果用于精确估计前馈补偿力矩,利用Lyapunov分析方法证明了闭环控制系统的稳定性。鉴于VSCMGs实际使用的力矩分配能力、避奇异能力、轮速平衡能力与末态框架角定位能力,分别设计了加权伪逆操纵律与3种对应的零运动。基于雅可比矩阵条件数提出了末态框架角的优选方法,给出了VSCMGs零运动在机动过程不同阶段的部署方案。结果表明:通过连续姿态机动数值仿真验证了所提算法的有效性;VSCMGs在连续机动过程中平滑切换模式,在不同的机动阶段实现了相应功能。模态观测值和惯量估计值在多次机动后收敛至真值附近,经过参数辨识后的控制器使航天器在机动末端更快更稳地达到指向精度要求。
基金National Natural Science Foundation of China(61004072)Fundamental Research Funds for the Central Universities(HIT.NSRIF.2009003)+1 种基金Research Fund for the Doctoral Program of Higher Education of China (20070213061, 20102302110031)Scientific Research Foundation for the Returned Overseas Chinese Scholars of Harbin (2010RFLXG001)
文摘A fault tolerant control (FTC) design technique against actuator stuck faults is investigated using integral-type sliding mode control (ISMC) with application to spacecraft attitude maneuvering control system. The principle of the proposed FTC scheme is to design an integral-type sliding mode attitude controller using on-line parameter adaptive updating law to compensate for the effects of stuck actuators. This adaptive law also provides both the estimates of the system parameters and external disturbances such that a prior knowledge of the spacecraft inertia or boundedness of disturbances is not required. Moreover, by including the integral feedback term, the designed controller can not only tolerate actuator stuck faults, but also compensate the disturbances with constant components. For the synthesis of controller, the fault time, patterns and values are unknown in advance, as motivated from a practical spacecraft control application. Complete stability and performance analysis are presented and illustrative simulation results of application to a spacecraft show that high precise attitude control with zero steady-error is successfully achieved using various scenarios of stuck failures in actuators.
文摘A current statistical model for maneuvering acceleration using an adaptive extended Kalman filter(CS-MAEKF) algorithm is proposed to solve problems existing in conventional extended Kalman filters such as large estimation error and divergent tendencies in the presence of continuous maneuvering acceleration. A membership function is introduced in this algorithm to adaptively modify the upper and lower limits of loitering vehicles' maneuvering acceleration and for realtime adjustment of maneuvering acceleration variance. This allows the algorithm to have superior static and dynamic performance for loitering vehicles undergoing different maneuvers. Digital simulations and dynamic flight testing show that the yaw angle accuracy of the algorithm is 30% better than conventional algorithms, and pitch and roll angle calculation precision is improved by 60%.The mean square deviation of heading and attitude angle error during dynamic flight is less than3.05°. Experimental results show that CS-MAEKF meets the application requirements of miniature loitering vehicles.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10772026, 11072030)the Ph.D. Programs Foundation of Ministry of Education of China (Grant No. 20080070011)+1 种基金the Scientific Research Foundation of Ministry of Education of China for Returned Scholars (Grant No. 20080732040)the Program of Beijing Municipal Key Discipline Construction
文摘In this paper, the chaotic dynamics in an attitude transition maneuver of a slosh-spacecraft coupled with flexible appendage in going from minor axis to major axis spin under the influence of dissipative effects due to fuel slosh and a small flexible appendage constrained to only torsional vibration is investigated. The slosh-spacecraft coupled with flexible appendage in attitude maneuver carrying a sloshing liquid is considered as multi-body system with the sloshing motion modeled as a spherical pendulum. The focus in this paper is that the dynamics of the liquid and flexible appendage vibration are coupled. The equations of motion are derived and transformed into a form suitable for the application of Melnikov’s method. Melnikov’s integral is used to predict the transversal intersections of the stable and unstable manifolds for the perturbed system. An analytical criterion for chaotic motion is derived in terms of system parameters. This criterion is evaluated for its significance to the design of spacecraft. The dependence of the onset of chaos on quantities such as body shape and magnitude of damping values, fuel fraction and torsional vibration frequency of flexible appendage are investigated. In addition, we show that a spacecraft carrying a sloshing liquid, after passive reorientation maneuver, will end up with periodic limit motion other than a final major axis spin because of the intrinsic non-linearity of fuel slosh. Furthermore, an extensive numerical simulation is carried out to validate the Melnikov’s analytical result.
基金co-supported by the National Natural Science Foundation of China (No. 51677130)the Independent Innovation Funds of Tianjin University (No. 1405)
文摘A parallel configuration using two 3-degree-of-freedom(3-DOF) spherical electromagnetic momentum exchange actuators is investigated for large angle spacecraft attitude maneuvers.First, the full dynamic equations of motion for the spacecraft system are derived by the NewtonEuler method. To facilitate computation, virtual gimbal coordinate frames are established. Second,a nonlinear control law in terms of quaternions is developed via backstepping method. The proposed control law compensates the coupling torques arising from the spacecraft rotation, and is robust against the external disturbances. Then, the singularity problem is analyzed. To avoid singularities, a modified weighed Moore-Pseudo inverse velocity steering law based on null motion is proposed. The weighted matrices are carefully designed to switch the actuators and redistribute the control torques. The null motion is used to reorient the rotor away from the tilt angle saturation state. Finally, numerical simulations of rest-to-rest maneuvers are performed to validate the effectiveness of the proposed method.