By constructing two suitable generalized Lyapunov functions,we derived a generalized ellipsoidal estimate of the globally attractive set and positively invariant set of the unified chaotic system with the parameters ...By constructing two suitable generalized Lyapunov functions,we derived a generalized ellipsoidal estimate of the globally attractive set and positively invariant set of the unified chaotic system with the parameters α=1/29 and 1/29<α<2/29,respectively,which extends some related results of Li,et al. [Li DM,Lu JA,Wu XQ,Chen GR,Estimating the global basin of attraction and positively invariant set for the Lorenz system and a unified chaotic system,Journal of Mathematical Analysis and Applications,2006,323(2): 844-853]. The theoretical results obtained in this paper will find wide application in chaos control and synchronization.展开更多
We consider the topological behaviors of continuous maps with one topological attractor on compact metric space X.This kind of map is a generalization of maps such as topologically expansive Lorenz map,unimodal map wi...We consider the topological behaviors of continuous maps with one topological attractor on compact metric space X.This kind of map is a generalization of maps such as topologically expansive Lorenz map,unimodal map without homtervals and so on.Under the finiteness and basin conditions,we provide a leveled A-R pair decomposition for such maps,and characterize α-limit set of each point.Based on weak Morse decomposition of X,we construct a bounded Lyapunov function V(x),which gives a clear description of orbit behavior of each point in X except a meager set.展开更多
The paper is devoted to the asymptotic properties of functional differential equations in Banach spaces.The criteria of the invariant and attracting sets are obtained.Particularly, the sufficient condition of asymptot...The paper is devoted to the asymptotic properties of functional differential equations in Banach spaces.The criteria of the invariant and attracting sets are obtained.Particularly, the sufficient condition of asymptotic stability of the equilibrium point is given as the system has an equilibrium point.Several examples are also worked out to demonstrate the validity of the results.展开更多
Discrete Lotka-Volterra systems in one dimension (the logistic equation) and two dimensions have been studied extensively, revealing a wealth of complex dynamical regimes. We show that three-dimensional discrete Lotka...Discrete Lotka-Volterra systems in one dimension (the logistic equation) and two dimensions have been studied extensively, revealing a wealth of complex dynamical regimes. We show that three-dimensional discrete Lotka-Volterra dynamical systems exhibit all of the dynamics of the lower dimensional systems and a great deal more. In fact and in particular, there are dynamical features including analogs of flip bifurcations, Neimark-Sacker bifurcations and chaotic strange attracting sets that are essentially three-dimensional. Among these are new generalizations of Neimark-Sacker bifurcations and novel chaotic strange attractors with distinctive candy cane type shapes. Several of these dynamical are investigated in detail using both analytical and simulation techniques.展开更多
An initial value boundary problem for system of diffusion equations with delay arguments and dynamic nonlinear boundary conditions is considered. The problem describes evolution of the carrier density and the radiatio...An initial value boundary problem for system of diffusion equations with delay arguments and dynamic nonlinear boundary conditions is considered. The problem describes evolution of the carrier density and the radiation density in the semiconductor laser or laser diodes with “memory” and with feedback. It is shown that the boundary problem can be reduced to a system of difference equations with continuous time. For large times, solutions of these equations tend to piecewise constant asymptotic periodic wave functions which represent chain of shock waves with finite or infinite points of discontinuities on a period. Applications to the optical systems with linear media and nonlinear surface optical properties with feedback have been done. The results are compared with the experiment.展开更多
Constructing a family of generalized Lyapunov functions, a new method is proposed to obtain new global attractive set and positive invariant set of the Lorenz chaotic system. The method we proposed greatly simplifies ...Constructing a family of generalized Lyapunov functions, a new method is proposed to obtain new global attractive set and positive invariant set of the Lorenz chaotic system. The method we proposed greatly simplifies the complex proofs of the two famous estimations presented by the Russian scholar Leonov. Our uniform formula can derive a series of the new estimations. Employing the idea of intersection in set theory, we extract a new Leonov formula-like estimation from the family of the estimations. With our method and the new estimation, one can confirm that there are no equilibrium, periodic solutions, almost periodic motions, wandering motions or other chaotic attractors outside the global attractive set. The Lorenz butterfly-like singular attractors are located in the global attractive set only. This result is applied to the chaos control and chaos synchronization. Some feedback control laws are obtained to guarantee that all the trajectories of the Lorenz systems track a periodic solution, or globally stabilize an unstable (or locally stable but not globally asymptotically stable) equilibrium. Further, some new global exponential chaos synchronization results are presented. Our new method and the new results are expected to be applied in real secure communication systems.展开更多
In this paper, the concept of globally exponentially attractive set is proposed and used to consider the ultimate bounds of the family of Lorenz systems with varying parameters. Explicit estimations of the ultimate bo...In this paper, the concept of globally exponentially attractive set is proposed and used to consider the ultimate bounds of the family of Lorenz systems with varying parameters. Explicit estimations of the ultimate bounds are derived. The results presented in this paper contain all the existing results as special cases. In particular, the critical cases, b→ 1^+ and a→0^+, for which the previous methods failed, have been solved using a unified formula.展开更多
By means of the Banach fixed point principle,we establish some sufficient conditions ensuring the existence of the global attracting sets and the exponential decay in the mean square of mild solutions for a class of n...By means of the Banach fixed point principle,we establish some sufficient conditions ensuring the existence of the global attracting sets and the exponential decay in the mean square of mild solutions for a class of neutral stochastic functional differential equations by Poisson jumps.An example is presented to illustrate the effectiveness of the obtained result.展开更多
We are concerned with a class of neutral stochastic partial differential equations driven by Rosenblatt process in a Hilbert space. By combining some stochastic analysis techniques, tools from semigroup theory, and st...We are concerned with a class of neutral stochastic partial differential equations driven by Rosenblatt process in a Hilbert space. By combining some stochastic analysis techniques, tools from semigroup theory, and stochastic integral inequalities, we identify the global attracting sets of this kind of equations. Especially, some sufficient conditions ensuring the exponent p-stability of mild solutions to the stochastic systems under investigation are obtained. Last, an example is given to illustrate the theory in the work.展开更多
In this paper,we are concerned with a class of impulsive neutral stochastic functional different equations driven by tempered fractional Brownian motion in the Hilbert space.We obtain the global attracting and quasi-i...In this paper,we are concerned with a class of impulsive neutral stochastic functional different equations driven by tempered fractional Brownian motion in the Hilbert space.We obtain the global attracting and quasi-invariant sets of the considered equations driven by tempered fractional Brownian motion B^(α,λ)(t)with 0<α<1/2 andλ>0.In particular,we give some sufficient conditions which ensure the exponential decay in the p-th moment of the mild solution of the considered equations.Finally,an example is given to illustrate the feasibility and effectiveness of the results obtained.展开更多
文摘By constructing two suitable generalized Lyapunov functions,we derived a generalized ellipsoidal estimate of the globally attractive set and positively invariant set of the unified chaotic system with the parameters α=1/29 and 1/29<α<2/29,respectively,which extends some related results of Li,et al. [Li DM,Lu JA,Wu XQ,Chen GR,Estimating the global basin of attraction and positively invariant set for the Lorenz system and a unified chaotic system,Journal of Mathematical Analysis and Applications,2006,323(2): 844-853]. The theoretical results obtained in this paper will find wide application in chaos control and synchronization.
基金supported by the National Key Re-search and Development Program of China(2020YFA0714200)supported by the Excellent Dissertation Cultivation Funds of Wuhan University of Technology(2018-YS-077)。
文摘We consider the topological behaviors of continuous maps with one topological attractor on compact metric space X.This kind of map is a generalization of maps such as topologically expansive Lorenz map,unimodal map without homtervals and so on.Under the finiteness and basin conditions,we provide a leveled A-R pair decomposition for such maps,and characterize α-limit set of each point.Based on weak Morse decomposition of X,we construct a bounded Lyapunov function V(x),which gives a clear description of orbit behavior of each point in X except a meager set.
基金Supported by the National Natural Science Foundation of China( 1 9831 0 30 ) ,( 1 0 1 71 0 72 ) .
文摘The paper is devoted to the asymptotic properties of functional differential equations in Banach spaces.The criteria of the invariant and attracting sets are obtained.Particularly, the sufficient condition of asymptotic stability of the equilibrium point is given as the system has an equilibrium point.Several examples are also worked out to demonstrate the validity of the results.
文摘Discrete Lotka-Volterra systems in one dimension (the logistic equation) and two dimensions have been studied extensively, revealing a wealth of complex dynamical regimes. We show that three-dimensional discrete Lotka-Volterra dynamical systems exhibit all of the dynamics of the lower dimensional systems and a great deal more. In fact and in particular, there are dynamical features including analogs of flip bifurcations, Neimark-Sacker bifurcations and chaotic strange attracting sets that are essentially three-dimensional. Among these are new generalizations of Neimark-Sacker bifurcations and novel chaotic strange attractors with distinctive candy cane type shapes. Several of these dynamical are investigated in detail using both analytical and simulation techniques.
文摘An initial value boundary problem for system of diffusion equations with delay arguments and dynamic nonlinear boundary conditions is considered. The problem describes evolution of the carrier density and the radiation density in the semiconductor laser or laser diodes with “memory” and with feedback. It is shown that the boundary problem can be reduced to a system of difference equations with continuous time. For large times, solutions of these equations tend to piecewise constant asymptotic periodic wave functions which represent chain of shock waves with finite or infinite points of discontinuities on a period. Applications to the optical systems with linear media and nonlinear surface optical properties with feedback have been done. The results are compared with the experiment.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.60274007,60474011)the Guangdong Povince Science Foundation for Program of Research Team(Grant No.04205783).
文摘Constructing a family of generalized Lyapunov functions, a new method is proposed to obtain new global attractive set and positive invariant set of the Lorenz chaotic system. The method we proposed greatly simplifies the complex proofs of the two famous estimations presented by the Russian scholar Leonov. Our uniform formula can derive a series of the new estimations. Employing the idea of intersection in set theory, we extract a new Leonov formula-like estimation from the family of the estimations. With our method and the new estimation, one can confirm that there are no equilibrium, periodic solutions, almost periodic motions, wandering motions or other chaotic attractors outside the global attractive set. The Lorenz butterfly-like singular attractors are located in the global attractive set only. This result is applied to the chaos control and chaos synchronization. Some feedback control laws are obtained to guarantee that all the trajectories of the Lorenz systems track a periodic solution, or globally stabilize an unstable (or locally stable but not globally asymptotically stable) equilibrium. Further, some new global exponential chaos synchronization results are presented. Our new method and the new results are expected to be applied in real secure communication systems.
基金Supported partly by the National Natural Science Foundation of China (Grant Nos. 60474011 and 60274007)the National Natural Science Foun-dation of China for Excellent Youth (Grant No. 60325310)+2 种基金the Guangdong Province Science Foundation for Program of Research Team (Grant No. 04205783)the Natural Science Fund of Guangdong Province, China (Grant No. 05006508)the Natural Science and Engineering Re-search Council of Canada (Grant No. R2686A02)
文摘In this paper, the concept of globally exponentially attractive set is proposed and used to consider the ultimate bounds of the family of Lorenz systems with varying parameters. Explicit estimations of the ultimate bounds are derived. The results presented in this paper contain all the existing results as special cases. In particular, the critical cases, b→ 1^+ and a→0^+, for which the previous methods failed, have been solved using a unified formula.
文摘By means of the Banach fixed point principle,we establish some sufficient conditions ensuring the existence of the global attracting sets and the exponential decay in the mean square of mild solutions for a class of neutral stochastic functional differential equations by Poisson jumps.An example is presented to illustrate the effectiveness of the obtained result.
文摘We are concerned with a class of neutral stochastic partial differential equations driven by Rosenblatt process in a Hilbert space. By combining some stochastic analysis techniques, tools from semigroup theory, and stochastic integral inequalities, we identify the global attracting sets of this kind of equations. Especially, some sufficient conditions ensuring the exponent p-stability of mild solutions to the stochastic systems under investigation are obtained. Last, an example is given to illustrate the theory in the work.
基金partially supported by the NNSF of China(No.11901058)
文摘In this paper,we are concerned with a class of impulsive neutral stochastic functional different equations driven by tempered fractional Brownian motion in the Hilbert space.We obtain the global attracting and quasi-invariant sets of the considered equations driven by tempered fractional Brownian motion B^(α,λ)(t)with 0<α<1/2 andλ>0.In particular,we give some sufficient conditions which ensure the exponential decay in the p-th moment of the mild solution of the considered equations.Finally,an example is given to illustrate the feasibility and effectiveness of the results obtained.