The surface-enhanced Raman scattering(SERS) optical fiber probes were successfully prepared by self-assembling on polyelectrolyte multilayers. Gold nanorods(Au NRs) were used as SERS enhancement material to give excel...The surface-enhanced Raman scattering(SERS) optical fiber probes were successfully prepared by self-assembling on polyelectrolyte multilayers. Gold nanorods(Au NRs) were used as SERS enhancement material to give excellent biological affinity and stability to the SERS optical fiber probes. Au NRs were synthesized by seed growth method. The synergistic effect between AgNO_(3) and surfactant was investigated, and the highest yield was found when AgNO_(3) was 500 uL. Meanwhile, different SERS optical fiber probes were obtained by selecting silane coupling agent, polyelectrolyte multilayer and graphene oxide(GO) to treat quartz fiber. It was found that the SERS optical fiber probes obtained by the self-assembled on polyelectrolyte multilayers method performed better than those by other methods. In addition, Mapping was combined with finite element simulation to analyze the electromagnetic field distribution at the fiber end face.The electromagnetic field distribution of Au NRs was investigated, the difference of electromagnetic field intensity around the Au NRs with different arrangements was compared, the strongest signal was obtained when the Au NRs were head-to-head. Finally, sensitivity of the optimized SERS optical fiber probes could reach 10^(-9)mol/L, with excellent stability and repeatability.展开更多
Accurate researches on the surface plasmon resonance(SPR)-based applications of chiral plasmonic metal nanoparticles(NPs)still remain a great challenge.Herein,a series of chiral plasmonic metal NPs,e.g.,chiral Au nano...Accurate researches on the surface plasmon resonance(SPR)-based applications of chiral plasmonic metal nanoparticles(NPs)still remain a great challenge.Herein,a series of chiral plasmonic metal NPs,e.g.,chiral Au nanorods(c-Au NRs),c-Au@Ag core–shell,and c-Au@TiO_(2) core–shell NRs,with different chiroptical activities have been produced.Plasmonic circular dichroism(PCD)bands of c-Au NRs can be precisely tailored by tuning the longitudinal SPR(LSPR)and amount of Au NRs as seeds.Besides,a shift of PCD bands within ultraviolet–visible–near infrared ray(UV–vis–NIR)region can also be achieved through the functionalization of a shell of another metal or semiconductor.Interestingly,chirality transfer from c-Au core to Ag shell leads to new PCD bands at the near-UV region.The tuning of PCD bands and chirality transfer are confirmed by our developed theoretical model.Developing chiral Au NRs-based chiral plasmonic nanomaterials with tunable chiroptical activities will be helpful to understand the structure-direct PCD and to extend circularly polarized-based applications.展开更多
Here,we developed a novel electrochemiluminescence resonance energy transfer(ECL-RET) approach between Ru(bpy)_3^(2+) and Au nanorods(NRs) for sensitive determination of H_2O_2.Au NRs were synthesized through silver i...Here,we developed a novel electrochemiluminescence resonance energy transfer(ECL-RET) approach between Ru(bpy)_3^(2+) and Au nanorods(NRs) for sensitive determination of H_2O_2.Au NRs were synthesized through silver ion-assisted seed-mediated method which exhibited an obvious absorption peak at about 627 nm.They were modified at glassy carbon electrode(GCE) surface which showed a significant ECL quenching efficiency about 56.5%due to the ECL-RET process.This Au NRs modified electrode was then utilized to measure the concentration of H_2O_2 on the basis of the significant quenching effect of H_2O_2 on Ru(bpy)_3^(2+) ECL.Results demonstrated that the decrement of ECL intensity at Au NRs modified electrode had ~ 6.6-fold enhancement as compared with that at bare electrode.展开更多
基金Funded by National Natural Science Foundation of China (Nos.51372179, 51772224)the Open Projects Foundation of Yangtze Optical Fiber and Cable Joint Stock Limited Company (YOFC)(No.SKLD1705)。
文摘The surface-enhanced Raman scattering(SERS) optical fiber probes were successfully prepared by self-assembling on polyelectrolyte multilayers. Gold nanorods(Au NRs) were used as SERS enhancement material to give excellent biological affinity and stability to the SERS optical fiber probes. Au NRs were synthesized by seed growth method. The synergistic effect between AgNO_(3) and surfactant was investigated, and the highest yield was found when AgNO_(3) was 500 uL. Meanwhile, different SERS optical fiber probes were obtained by selecting silane coupling agent, polyelectrolyte multilayer and graphene oxide(GO) to treat quartz fiber. It was found that the SERS optical fiber probes obtained by the self-assembled on polyelectrolyte multilayers method performed better than those by other methods. In addition, Mapping was combined with finite element simulation to analyze the electromagnetic field distribution at the fiber end face.The electromagnetic field distribution of Au NRs was investigated, the difference of electromagnetic field intensity around the Au NRs with different arrangements was compared, the strongest signal was obtained when the Au NRs were head-to-head. Finally, sensitivity of the optimized SERS optical fiber probes could reach 10^(-9)mol/L, with excellent stability and repeatability.
基金supported by the National Natural Science Foundation of China(Nos.21902148,11774036,12174032,and 22071172)the National Key Research and Development Program of China(No.2017YFA0303400)+1 种基金the National Natural Science Foundation of China-Research Grant Council(No.11861161002)K.Y.W.acknowledges the support by the Patrick S.C.Poon endowed professorship.
文摘Accurate researches on the surface plasmon resonance(SPR)-based applications of chiral plasmonic metal nanoparticles(NPs)still remain a great challenge.Herein,a series of chiral plasmonic metal NPs,e.g.,chiral Au nanorods(c-Au NRs),c-Au@Ag core–shell,and c-Au@TiO_(2) core–shell NRs,with different chiroptical activities have been produced.Plasmonic circular dichroism(PCD)bands of c-Au NRs can be precisely tailored by tuning the longitudinal SPR(LSPR)and amount of Au NRs as seeds.Besides,a shift of PCD bands within ultraviolet–visible–near infrared ray(UV–vis–NIR)region can also be achieved through the functionalization of a shell of another metal or semiconductor.Interestingly,chirality transfer from c-Au core to Ag shell leads to new PCD bands at the near-UV region.The tuning of PCD bands and chirality transfer are confirmed by our developed theoretical model.Developing chiral Au NRs-based chiral plasmonic nanomaterials with tunable chiroptical activities will be helpful to understand the structure-direct PCD and to extend circularly polarized-based applications.
基金supported by the Program for Student Innovation Through Research and Training(201510307079)the National Natural Science Foundation of China(21305068)the Natural Science Foundation of Jiangsu Province(BK20130666)
文摘Here,we developed a novel electrochemiluminescence resonance energy transfer(ECL-RET) approach between Ru(bpy)_3^(2+) and Au nanorods(NRs) for sensitive determination of H_2O_2.Au NRs were synthesized through silver ion-assisted seed-mediated method which exhibited an obvious absorption peak at about 627 nm.They were modified at glassy carbon electrode(GCE) surface which showed a significant ECL quenching efficiency about 56.5%due to the ECL-RET process.This Au NRs modified electrode was then utilized to measure the concentration of H_2O_2 on the basis of the significant quenching effect of H_2O_2 on Ru(bpy)_3^(2+) ECL.Results demonstrated that the decrement of ECL intensity at Au NRs modified electrode had ~ 6.6-fold enhancement as compared with that at bare electrode.