Proteins adsorption at solid surfaces are of paramount important for many natural processes. However, the role of specific water in influencing the adsorption process has not been well understood. We used molecular dy...Proteins adsorption at solid surfaces are of paramount important for many natural processes. However, the role of specific water in influencing the adsorption process has not been well understood. We used molecular dynamics simulation to study the adsorption of BPTI on Au surface in three water environments (dielectric constant model, partial and full solvation models). The result shows that a fast and strong adsorption can occur in the dielectric environment, which leads to significant structure changes, as confirmed by great deviation from the crystal structure, largely spreading along the Au surface, rapid lose in all secondary structures and the great number of atoms in contact with the surface. Compared to the dielectric model, slower adsorption and fewer changes in the calculated properties above are observed in the partial solvation system since the specific water layer weakens the adsorption effects. However, in the partial solvation system, the adsorption of polar Au surface causes a significant decrease in the specific hydration around the protein, which still results in large structure changes similar to the dielectric system, but with much less adsorption extent. Enough water molecules in the full solvation system could allow the protein to rotate, and to large extent preserve the protein native structure, thus leading to the slowest and weakest adsorption. On the whole, the effects of non-specific and specific solvation on the protein structure and adsorption dynamics are significantly different, highlighting the importance of the specific water molecule in the protein adsorption.展开更多
The resonance behaviors of local surface plasmon resonance in Au monomer and dimer are characterized sys- temically by electron energy loss spectroscopy in a scanning transmission electron microscope. The measured abs...The resonance behaviors of local surface plasmon resonance in Au monomer and dimer are characterized sys- temically by electron energy loss spectroscopy in a scanning transmission electron microscope. The measured absorption range is about 20nm larger than the physical size of the Au nanoparticles and the resonance peak energy shows a red shift when the electron beam passes off the nanoparticles. The Au dimer displays similar behaviors. Numerical simulation also reproduces those experimental results.展开更多
Adsorption of CH3O at four sites (top, bridge, hcp, fcc) on Au(111) surface has been investigated by density functional theory method at the generalized gradient approximation level. We have performed calculations...Adsorption of CH3O at four sites (top, bridge, hcp, fcc) on Au(111) surface has been investigated by density functional theory method at the generalized gradient approximation level. We have performed calculations on adsorption energies, structures, Mulliken charges and vibrational frequencies of CH3O on Au(111) surface with full-geometry optimization. The predicted results are compared with the available experimental observation. The calculated CH3O adsorption structure and stretching vibrational frequencies agree well with experimental ones, and precise determinations of adsorption sites are carded out. The most favorite adsorption on Au(111) occurs at the bridge site, and O-C axis is tilted to the surface. However, on hollow sites (hcp, fcc) the species is adsorbed in an upright geometry (pseudo-C3v local symmetry).展开更多
Here we report the thermo-controllable self-assembled structures of single-layer 4, 4''-diamino-p-terphenyl(DAT)molecules on Au(110), which are investigated by scanning tunneling microscopy(STM) combined with ...Here we report the thermo-controllable self-assembled structures of single-layer 4, 4''-diamino-p-terphenyl(DAT)molecules on Au(110), which are investigated by scanning tunneling microscopy(STM) combined with density functional theory(DFT) based calculations. With the deposition of monolayer DAT molecules on Au(110) and subsequent annealing at 100℃, all DAT molecules adsorb on a(1×5) reconstructed surface with a ladder-like structure. After annealing the sample at about 200℃, STM images show three distinct domains, including DAT molecules on a(1×3) reconstructed surface, dehydrogenated molecules with two hydrogen atoms detached from one amino group(–2H-DAT) on a(1×5)reconstructed surface and dehydrogenated molecules with four hydrogen atoms detached from two amino groups(–4HDAT) on a(1×3) reconstructed surface through N–Au bonds. Furthermore, after annealing the sample to 350℃, STM image shows only one self-assembled structure with –4H-DAT molecules on a(1×3) reconstructed surface. Relative STM simulations of different self-assembled structures show excellent agreements with the experimental STM images at different annealing temperatures. Further DFT calculations on the dehydrogenation process of DAT molecule prove that the dehydrogenation barrier on a(1×5) reconstructed surface is lower than that on(1×3) one, which demonstrate the experimental results that the formation temperature of a(1×3) reconstructed surface is higher than that of a(1×5) one.展开更多
Direct epoxidation of propylene with H_(2)/O_(2),being the dream reaction for propylene oxide(PO)production,has raised wide scientific and industrial interests.Fundamentally understanding the formation mechanism of ac...Direct epoxidation of propylene with H_(2)/O_(2),being the dream reaction for propylene oxide(PO)production,has raised wide scientific and industrial interests.Fundamentally understanding the formation mechanism of acrolein,as the main by-product of this epoxidation process,is very important to achieve the high yield of PO.In this study,we perform the spin-polarized density functional theory(DFT)calculations to investigate the reaction pathway from propylene to acrolein over two representative Au surfaces,that is,Au(111)and Au(100),which incorporates propylene adsorption,methyl hydrogen activation and acrolein formation.The results show that the oxygenated species(mainly O^(*),OH^(*)and OOH^(*))are able to stabilize the adsorption of propylene to decrease the energy barrier for its activation.It is demonstrated that the OOH^(*)on Au(111)surface emerges as the most easily formed oxygenated species via the H-assisted O_(2) dissociation,which is also the most active for the cleavage of methyl CAH bond in propylene.Furthermore,three pathways of acrolein formation activated by O^(*)/OH^(*)/OOH^(*)are analyzed,in which O^(*)is found as the key species to form acrolein.Finally,Bader charge analysis was conducted to explore the reasons behind the promotion effect of the oxygenated species.The insights reported here could be valuable in the design and optimization of gold catalysts for the direct epoxidation of propylene.展开更多
We report an experimental study on the synthesis of metal nanoparticles (NPs) with adjustable optical density based on surface plasmon resonance (SPR). Metal NPs prepared by laser ablation in liquid method and the...We report an experimental study on the synthesis of metal nanoparticles (NPs) with adjustable optical density based on surface plasmon resonance (SPR). Metal NPs prepared by laser ablation in liquid method and the effect of laser parameters on the size, distribution, wavelength of SPR of Ag, Au, and mixture of Ag-Au, and Ag core/Au shell NPs are investigated. Our results show that the adjustable SPR band can be achieved in each class of NPs which is suitable for adjustable optical window applications.展开更多
Simple and efficient surface acoustic wave (SAW) two-port resonators with low insertion loss and high Q-values on ST-X quartz substrate using a corrosion-proof A1/Au-stripe electrode structure are developed for gas ...Simple and efficient surface acoustic wave (SAW) two-port resonators with low insertion loss and high Q-values on ST-X quartz substrate using a corrosion-proof A1/Au-stripe electrode structure are developed for gas sensing. It was composed of two shorted grating reflectors and adjacent intedigital transducers (IDT), and an active metal film in the cavity between the IDTs for the sensitive film coating. The devices are expected to provide good protection towards metal electrode for gas sensors application in chemically reactive environments. Excellent device performance as low insertion loss, high Q factor and single-mode are achieved by carefully selecting the metallic electrode thickness, cavity length and acoustic aperture. Prior to fabrication, the coupling of modes (COM) model was performed for device simulation to determine the optimal design parameters. The fabricated single-mode SAW resonator at operation frequency of 300 MHz range exhibits matched insertion loss of ~6.5 dB and loaded Q factor in the 3000 range. Using the fabricated resonator as the feedback element, a duaresonator-oscillator with excellent frequency stability (0.1 ppm) was developed and evaluated experimentally, and it is significant for performance improvement of SAW gas sensor.展开更多
The Au(100)surface has been a subject of intense studies due to excellent catalytic activities and its model character for surface science.However,the spontaneous surface reconstruction buries active Au(100)plane and ...The Au(100)surface has been a subject of intense studies due to excellent catalytic activities and its model character for surface science.However,the spontaneous surface reconstruction buries active Au(100)plane and limits practical applications,how to controllably eliminate the surface reconstruction over large scale remains challenging.Here,we experimentally and theoretically demonstrate that simple decoration of the Au(100)surface by tellurium(Te)atoms can uniquely lift its reconstruction over large scale.Scanning tunneling microscopy imaging reveals that the lifting of surface reconstruction preferentially starts from the boundaries of distinct domains and then extends progressively into the domains with the reconstruction rows perpendicular to the boundaries,leaving a Au(100)-(1×1)surface behind.The Au(100)-(1×1)is saturated at~84%±2%with respect to the whole surface at a Te coverage of 0.16 monolayer.With further increasing the Te coverage to 0.25 monolayer,the Au(100)-(1×1)surface becomes reduced and overlapped by a well-ordered(2×2)-Te superstructure.No similar behavior is found for Te-decorated Au(111),Cu(111),Cu(100)surfaces,nor for the decorated Au(100)with other elements.This result may pave the way to design Au-based catalysts and,as an intermediate step,even potentially open a new route to constructing complex transition metal dichalcogenides.展开更多
文摘Proteins adsorption at solid surfaces are of paramount important for many natural processes. However, the role of specific water in influencing the adsorption process has not been well understood. We used molecular dynamics simulation to study the adsorption of BPTI on Au surface in three water environments (dielectric constant model, partial and full solvation models). The result shows that a fast and strong adsorption can occur in the dielectric environment, which leads to significant structure changes, as confirmed by great deviation from the crystal structure, largely spreading along the Au surface, rapid lose in all secondary structures and the great number of atoms in contact with the surface. Compared to the dielectric model, slower adsorption and fewer changes in the calculated properties above are observed in the partial solvation system since the specific water layer weakens the adsorption effects. However, in the partial solvation system, the adsorption of polar Au surface causes a significant decrease in the specific hydration around the protein, which still results in large structure changes similar to the dielectric system, but with much less adsorption extent. Enough water molecules in the full solvation system could allow the protein to rotate, and to large extent preserve the protein native structure, thus leading to the slowest and weakest adsorption. On the whole, the effects of non-specific and specific solvation on the protein structure and adsorption dynamics are significantly different, highlighting the importance of the specific water molecule in the protein adsorption.
基金Supported by the National Basic Research Program of China under Grant Nos 2013CB932904 and 2012CB932302the National Natural Science Foundation of China under Grant No 11274365
文摘The resonance behaviors of local surface plasmon resonance in Au monomer and dimer are characterized sys- temically by electron energy loss spectroscopy in a scanning transmission electron microscope. The measured absorption range is about 20nm larger than the physical size of the Au nanoparticles and the resonance peak energy shows a red shift when the electron beam passes off the nanoparticles. The Au dimer displays similar behaviors. Numerical simulation also reproduces those experimental results.
文摘Adsorption of CH3O at four sites (top, bridge, hcp, fcc) on Au(111) surface has been investigated by density functional theory method at the generalized gradient approximation level. We have performed calculations on adsorption energies, structures, Mulliken charges and vibrational frequencies of CH3O on Au(111) surface with full-geometry optimization. The predicted results are compared with the available experimental observation. The calculated CH3O adsorption structure and stretching vibrational frequencies agree well with experimental ones, and precise determinations of adsorption sites are carded out. The most favorite adsorption on Au(111) occurs at the bridge site, and O-C axis is tilted to the surface. However, on hollow sites (hcp, fcc) the species is adsorbed in an upright geometry (pseudo-C3v local symmetry).
基金supported by the National Natural Science Foundation of China(Grant Nos.61390501,61471337,61622116,and 51325204)the National Key Scientific Instrument and Equipment Development Project of China(Grant No.2013YQ1203451)+1 种基金the CAS Hundred Talents Program,the Transregional Collaborative Research Center TRR 61(Grant No.21661132006)the National Supercomputing Center in Tianjin.A portion of the research was performed in CAS Key Laboratory of Vacuum Physics
文摘Here we report the thermo-controllable self-assembled structures of single-layer 4, 4''-diamino-p-terphenyl(DAT)molecules on Au(110), which are investigated by scanning tunneling microscopy(STM) combined with density functional theory(DFT) based calculations. With the deposition of monolayer DAT molecules on Au(110) and subsequent annealing at 100℃, all DAT molecules adsorb on a(1×5) reconstructed surface with a ladder-like structure. After annealing the sample at about 200℃, STM images show three distinct domains, including DAT molecules on a(1×3) reconstructed surface, dehydrogenated molecules with two hydrogen atoms detached from one amino group(–2H-DAT) on a(1×5)reconstructed surface and dehydrogenated molecules with four hydrogen atoms detached from two amino groups(–4HDAT) on a(1×3) reconstructed surface through N–Au bonds. Furthermore, after annealing the sample to 350℃, STM image shows only one self-assembled structure with –4H-DAT molecules on a(1×3) reconstructed surface. Relative STM simulations of different self-assembled structures show excellent agreements with the experimental STM images at different annealing temperatures. Further DFT calculations on the dehydrogenation process of DAT molecule prove that the dehydrogenation barrier on a(1×5) reconstructed surface is lower than that on(1×3) one, which demonstrate the experimental results that the formation temperature of a(1×3) reconstructed surface is higher than that of a(1×5) one.
基金financially supported by the Research Fund for National Key Research and Development Program of China (2021YFA1501403)the National Natural Science Foundation of China (22208094,22038003,21922803,22178100)+1 种基金the Innovation Program of Shanghai Municipal Education Commission,the Program of Shanghai Academic/Technology Research Leader (21XD1421000)the Shanghai Science and Technology Innovation Action Plan (22JC1403800)。
文摘Direct epoxidation of propylene with H_(2)/O_(2),being the dream reaction for propylene oxide(PO)production,has raised wide scientific and industrial interests.Fundamentally understanding the formation mechanism of acrolein,as the main by-product of this epoxidation process,is very important to achieve the high yield of PO.In this study,we perform the spin-polarized density functional theory(DFT)calculations to investigate the reaction pathway from propylene to acrolein over two representative Au surfaces,that is,Au(111)and Au(100),which incorporates propylene adsorption,methyl hydrogen activation and acrolein formation.The results show that the oxygenated species(mainly O^(*),OH^(*)and OOH^(*))are able to stabilize the adsorption of propylene to decrease the energy barrier for its activation.It is demonstrated that the OOH^(*)on Au(111)surface emerges as the most easily formed oxygenated species via the H-assisted O_(2) dissociation,which is also the most active for the cleavage of methyl CAH bond in propylene.Furthermore,three pathways of acrolein formation activated by O^(*)/OH^(*)/OOH^(*)are analyzed,in which O^(*)is found as the key species to form acrolein.Finally,Bader charge analysis was conducted to explore the reasons behind the promotion effect of the oxygenated species.The insights reported here could be valuable in the design and optimization of gold catalysts for the direct epoxidation of propylene.
文摘We report an experimental study on the synthesis of metal nanoparticles (NPs) with adjustable optical density based on surface plasmon resonance (SPR). Metal NPs prepared by laser ablation in liquid method and the effect of laser parameters on the size, distribution, wavelength of SPR of Ag, Au, and mixture of Ag-Au, and Ag core/Au shell NPs are investigated. Our results show that the adjustable SPR band can be achieved in each class of NPs which is suitable for adjustable optical window applications.
基金supported by the National Nature Science Foundation of China(11074268,10834010)
文摘Simple and efficient surface acoustic wave (SAW) two-port resonators with low insertion loss and high Q-values on ST-X quartz substrate using a corrosion-proof A1/Au-stripe electrode structure are developed for gas sensing. It was composed of two shorted grating reflectors and adjacent intedigital transducers (IDT), and an active metal film in the cavity between the IDTs for the sensitive film coating. The devices are expected to provide good protection towards metal electrode for gas sensors application in chemically reactive environments. Excellent device performance as low insertion loss, high Q factor and single-mode are achieved by carefully selecting the metallic electrode thickness, cavity length and acoustic aperture. Prior to fabrication, the coupling of modes (COM) model was performed for device simulation to determine the optimal design parameters. The fabricated single-mode SAW resonator at operation frequency of 300 MHz range exhibits matched insertion loss of ~6.5 dB and loaded Q factor in the 3000 range. Using the fabricated resonator as the feedback element, a duaresonator-oscillator with excellent frequency stability (0.1 ppm) was developed and evaluated experimentally, and it is significant for performance improvement of SAW gas sensor.
基金the National Natural Science Foundation of China(No.1210040808)the Natural Science Foundation of Jiangsu Province(Nos.BK20210312 and BK20212008)+3 种基金the National Key Research and Development Program of China(No.2019YFA0705400)the Fundamental Research Funds for the Central Universities(Nos.NJ2022002,NZ2020001,and NS2022014)the Program for Innovative Talents and Entrepreneur in Jiangsu,Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures(Nos.MCMS-I-0419G02 and MCMS-I-0421K01)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘The Au(100)surface has been a subject of intense studies due to excellent catalytic activities and its model character for surface science.However,the spontaneous surface reconstruction buries active Au(100)plane and limits practical applications,how to controllably eliminate the surface reconstruction over large scale remains challenging.Here,we experimentally and theoretically demonstrate that simple decoration of the Au(100)surface by tellurium(Te)atoms can uniquely lift its reconstruction over large scale.Scanning tunneling microscopy imaging reveals that the lifting of surface reconstruction preferentially starts from the boundaries of distinct domains and then extends progressively into the domains with the reconstruction rows perpendicular to the boundaries,leaving a Au(100)-(1×1)surface behind.The Au(100)-(1×1)is saturated at~84%±2%with respect to the whole surface at a Te coverage of 0.16 monolayer.With further increasing the Te coverage to 0.25 monolayer,the Au(100)-(1×1)surface becomes reduced and overlapped by a well-ordered(2×2)-Te superstructure.No similar behavior is found for Te-decorated Au(111),Cu(111),Cu(100)surfaces,nor for the decorated Au(100)with other elements.This result may pave the way to design Au-based catalysts and,as an intermediate step,even potentially open a new route to constructing complex transition metal dichalcogenides.