Au/Al2O3 catalyst was prepared by a modified anion impregnation method and investigated with respect to its initial activity and stability for low-temperature CO oxidation.The activity changes of the catalyst were exa...Au/Al2O3 catalyst was prepared by a modified anion impregnation method and investigated with respect to its initial activity and stability for low-temperature CO oxidation.The activity changes of the catalyst were examined after separate treatment in CO+O2 or CO2 +O2 .Furthermore,in situ FT-IR studies were performed to investigate the species on the surface when CO or CO+O2 or CO2 +O2 was selected separately as adsorption gas.The results showed that Au/Al2O3 catalyst exhibited very high initial activity,but the catalytic activity was found to decrease gradually during CO oxidation with time on stream.And also,the activity of the catalyst declined after treatment in CO+O2 or CO2 +O2 .The formation and accumulation of carbonate-like species during CO oxidation or treatment in CO+O2 or CO2 +O2 might be mainly responsible for the activity decrease,which was reversible.展开更多
The selective aerobic oxidation of biomass-derived 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid (FDCA, a potential renewable substitution of fossil-based terephthalic acid to produce polyethylene 2,5-furandic...The selective aerobic oxidation of biomass-derived 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid (FDCA, a potential renewable substitution of fossil-based terephthalic acid to produce polyethylene 2,5-furandicarboxylate plastic) is an appealing transformation for constructing eco-friendly and sustainable chemical processes. Au supported catalysts have showed encouraging performances for this well-received conversion, whose catalytic behavior was greatly affected by the adopted support derived from the existence of metal-support interactions. Herein, a series of Mg-Beta zeolites were hydrothermally synthesized via developed structural reconstruction, which were employed as basic supports for Au catalysts to construct bifunctional catalysts. The relationship between structure (Au particle size, basicity within zeolites and Auδ+ contents) and FDCA yield was concretely established. The conclusion was made that the utilization of Mg-Beta zeolites with strong basicity as the support could not only improve the FDCA yield but also decrease the amount of additional base. Furthermore, the possible reaction mechanism was also proposed via tracking time-dependent variations of corresponding organics and controlled experiment. This work provides some guidance for rationally designing multifunctional catalysts in the view of integrating metal catalysts with metallosilicate zeolites, which was beneficial to the catalytic upgrading of organic compounds with multiple functional groups.展开更多
Supported-Au catalysts show excellent activity in CO oxidation,where the nature of the support has a significant impact on catalytic activity.In this work,a hexagonal boron nitride(BN)support with a high surface area ...Supported-Au catalysts show excellent activity in CO oxidation,where the nature of the support has a significant impact on catalytic activity.In this work,a hexagonal boron nitride(BN)support with a high surface area and adequately exposed edges was obtained by the ball-milling technique.Thereafter,impregnation of the BN support with Cu(NO3)2 followed by calcination under air at 400℃ yielded a CuO-modified support.After Au loading,the obtained Au-CuO_(x)/BN catalyst exhibited high CO oxidation activity at low temperatures with a 50%CO conversion temperature(T50%)of 25℃ and a complete CO conversion temperature(T100%)of 80℃,well within the operational temperature range of proton exchange membrane fuel cells.However,the CO oxidation activity of Au/BN,prepared without CuO_(x) for comparison,was found to be relatively low.Our study reveals that BN alone disperses both Cu and Au nanoparticles well.However,Au nanoparticles on the surface of BN in the absence of CuO species tend to aggregate upon CO oxidation reactions.Conversely,Au nanoparticles supported on the surface of CuO-modified BN remain small with an average size of~2.0 nm before and after CO oxidation.Moreover,electron transfer between Au and Cu species possibly favors the stabilization of highly dispersed Au nanoparticles on the BN surface and also enhances CO adsorption.Thus,our results demonstrate that thermally stable and conductive CuO-modified BN is an excellent support for the preparation of highly dispersed and stable Au catalysts.展开更多
The supported Au/TiO2 and Au/TiO2-SiO2 catalysts were prepared by deposition precipitation method. The TPD study reveals that propylene oxide competes with propylene to be adsorbed on the same adsorptive center-Ti^n+...The supported Au/TiO2 and Au/TiO2-SiO2 catalysts were prepared by deposition precipitation method. The TPD study reveals that propylene oxide competes with propylene to be adsorbed on the same adsorptive center-Ti^n+ site on the surface of the catalyst and that the adisorbing capacity of the catalyst for propylene oxide is larger than that for propylene. Catalytic behavior for propylene epoxidation with H2 and O2 was tested in a micro-reactor. Under typical conditions, the selectivity for propylene oxide is over 87%. The TG curves show that PO successive oxidation cause carbon deposition on the active center and deactivation of the Au catalysts. Because the amounts of Tin+ site decrease significantly, and consequently the separation between Ti^n+ sites increases, the Au/TiO2-SiO2 catalyst is more stable than Au/TiO2.展开更多
So far,it is still a controversial issue which status of gold species is a better active site for catalyzing CO oxidation.Herein,the influence of the different atmospheres pretreatment(oxidative and reductive)on gold ...So far,it is still a controversial issue which status of gold species is a better active site for catalyzing CO oxidation.Herein,the influence of the different atmospheres pretreatment(oxidative and reductive)on gold state of Au/La-CeOx(1 wt%gold loading)catalyst during CO oxidation was studied.The changes of Au species were monitored by combined in situ diffuse reflectance infrared Fourier transform spectroscopy(in situ DRIFTS)and X-ray photoelectron spectroscopy(XPS).For the sample pretreated with oxidative atmosphere,the data show that the initial Au^(3+)is transformed to Au^(δ+)(0<δ<1)during CO oxidation,which is a key step to lead to higher reactivity.For the sample after reductive atmosphere pretreatment,Au^(δ+)is mixed with a small amount of Au^(0)which can be converted to Au^(δ+)with the increase of temperature in reaction.Meanwhile,the sample always maintains high activity during the reaction.Therefore,the Au®+obtained by reductive pretreatment is more active than the Au^(3+)obtained by oxidative treatment in catalyzing CO oxidation.展开更多
The aerobic oxidation of glycerol provides an economically viable route to glyceraldehyde, dihydroxyacetone and glyceric acid with versatile applications, for which monometallic Pt, Au and Pd and bimetallic Au-Pt, Au-...The aerobic oxidation of glycerol provides an economically viable route to glyceraldehyde, dihydroxyacetone and glyceric acid with versatile applications, for which monometallic Pt, Au and Pd and bimetallic Au-Pt, Au- Pd and Pt-Pd catalysts on TiO2 were examined under base-free conditions. Pt exhibited a superior activity relative to Pd, and Au-Pd and Pt-Pd while Au was essentially inactive. The presence of Au on the Au-Pt/TiO2 catalysts led to their higher activities (normalized per Pt atom) in a wide range of Au/Pt atomic ratios (i.e. 1/3-7/1 ), and the one with the Au/Pt ratio of 3/1 exhibited the highest activity. Such promoting effect is ascribed to the increased electron density on Pt via the electron transfer from Au to Pt, as characterized by the temperature-programmed desorption of CO and infra-red spectroscopy for CO adsorption. Meanwhile, the presence of Au on Au-Pt/TiO2, most like due to the observed electron transfer, changed the product selectivity, and facilitated the oxidation of the secondary hydroxyl groups in glycerol, leading to the favorable formation of dihydroxyacetone over glyceraldehyde and glyceric acid that were derived from the oxidation of the primary hydroxyl groups. The synergetic effect between Au and Pt demonstrates the feasibility in the efficient oxidation of glycerol to the targeted products, for example, by rational tuning of the electronic properties of metal catalysts.展开更多
Perovskite oxide LaMnO3 was prepared by sol-gel method and the nanosize Au/LaMnO3 catalyst was prepared by deposition-precipitation(DP) method in the paper.Characterization of the catalyst sample was made by X-ray d...Perovskite oxide LaMnO3 was prepared by sol-gel method and the nanosize Au/LaMnO3 catalyst was prepared by deposition-precipitation(DP) method in the paper.Characterization of the catalyst sample was made by X-ray diffractometer(XRD),atom absorption spectra(AAS) and X-ray photoelectron spectroscopy(XPS) instrumental methods.The activity,long-term stability and the reasons for deactivation of the gold catalyst in CO oxidation were investigated.The experiment results demonstrated that the Au/LaMnO3 catalyst exhibited high stability in the ambient storage process.However,the gradual decrease in initial activity during 100 h reaction was still observed,which could be ascribed to the aggregation of gold particles and the transfer from gold ion to the metal gold.展开更多
Development of active and stable catalysts for low-temperature CO oxidation has long been regarded as a hot topic.In this contribution,we used CeO_(2) with high-density surface pits as support to prepare an active and...Development of active and stable catalysts for low-temperature CO oxidation has long been regarded as a hot topic.In this contribution,we used CeO_(2) with high-density surface pits as support to prepare an active and stable Au/CeO_(2) catalyst by an adsorption-deposition method.The obtained 0.05 wt%Au/CeO_(2)-TD(where TD represents thermal decomposition)can maintain its activity at 80℃ for more than 20 h or even after calcination at 800℃ for 2 h.The characterization results showed that the high-density surface pits on CeO_(2)-TD play a decisive role in the stabilization of Au and enhancement of the redox property.This work may provide a new strategy to improve the stability of supported metal catalysts by a simple and conventional method.展开更多
Identification of the catalytically active sites emerges as the prerequisite for an atomic-level comprehensive understanding and further rational design of highly efficient catalysts.Here,we demonstrate a kinetics str...Identification of the catalytically active sites emerges as the prerequisite for an atomic-level comprehensive understanding and further rational design of highly efficient catalysts.Here,we demonstrate a kinetics strategy to identify the active sites of Au catalyst for the disentanglement of geometric and electronic effects on the selective oxidation of propylene to acrolein.Both the Ti-containing titanium-silicalite-1(TS-1)and Ti-free silicalite-1(S-1)were employed as supports to immobilize Au catalysts,which were investigated by a combination of multiple characterization,kinetics analysis,crystal structure modelling.The Au(111)sites are identified as the main active site for acrolein formation,while their electronic effects are highly relevant to the presence or absence of Ti.Moreover,propylene epoxide(PO)formation mainly involves the co-participation of Au and Ti sites,the proximity between Au and Ti sites is found to have less influences on PO formation in a certain distance.In comparison,acrolein is very likely to generate over Au(111)sites via the hydrogen-assisted O_(2) activation to oxygenated species for its oxidizing propylene.The insights gained here could guide the design and preparation of Au catalysts for selective propylene oxidation.展开更多
基金supported by the Science and Research Reward Fund Program of Shandong Excellent Young Scientist of China (2007BS04033)
文摘Au/Al2O3 catalyst was prepared by a modified anion impregnation method and investigated with respect to its initial activity and stability for low-temperature CO oxidation.The activity changes of the catalyst were examined after separate treatment in CO+O2 or CO2 +O2 .Furthermore,in situ FT-IR studies were performed to investigate the species on the surface when CO or CO+O2 or CO2 +O2 was selected separately as adsorption gas.The results showed that Au/Al2O3 catalyst exhibited very high initial activity,but the catalytic activity was found to decrease gradually during CO oxidation with time on stream.And also,the activity of the catalyst declined after treatment in CO+O2 or CO2 +O2 .The formation and accumulation of carbonate-like species during CO oxidation or treatment in CO+O2 or CO2 +O2 might be mainly responsible for the activity decrease,which was reversible.
基金We gratefully acknowledge the financial supports from the National Natural Science Foundation of China(Nos.22072126,22002133,21676230 and 21373177)the Natural Science Foundation of Shandong Province(ZR2020QB055)the Young Scholars Research Fund of Yantai University(No.HY19B26).
文摘The selective aerobic oxidation of biomass-derived 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid (FDCA, a potential renewable substitution of fossil-based terephthalic acid to produce polyethylene 2,5-furandicarboxylate plastic) is an appealing transformation for constructing eco-friendly and sustainable chemical processes. Au supported catalysts have showed encouraging performances for this well-received conversion, whose catalytic behavior was greatly affected by the adopted support derived from the existence of metal-support interactions. Herein, a series of Mg-Beta zeolites were hydrothermally synthesized via developed structural reconstruction, which were employed as basic supports for Au catalysts to construct bifunctional catalysts. The relationship between structure (Au particle size, basicity within zeolites and Auδ+ contents) and FDCA yield was concretely established. The conclusion was made that the utilization of Mg-Beta zeolites with strong basicity as the support could not only improve the FDCA yield but also decrease the amount of additional base. Furthermore, the possible reaction mechanism was also proposed via tracking time-dependent variations of corresponding organics and controlled experiment. This work provides some guidance for rationally designing multifunctional catalysts in the view of integrating metal catalysts with metallosilicate zeolites, which was beneficial to the catalytic upgrading of organic compounds with multiple functional groups.
文摘Supported-Au catalysts show excellent activity in CO oxidation,where the nature of the support has a significant impact on catalytic activity.In this work,a hexagonal boron nitride(BN)support with a high surface area and adequately exposed edges was obtained by the ball-milling technique.Thereafter,impregnation of the BN support with Cu(NO3)2 followed by calcination under air at 400℃ yielded a CuO-modified support.After Au loading,the obtained Au-CuO_(x)/BN catalyst exhibited high CO oxidation activity at low temperatures with a 50%CO conversion temperature(T50%)of 25℃ and a complete CO conversion temperature(T100%)of 80℃,well within the operational temperature range of proton exchange membrane fuel cells.However,the CO oxidation activity of Au/BN,prepared without CuO_(x) for comparison,was found to be relatively low.Our study reveals that BN alone disperses both Cu and Au nanoparticles well.However,Au nanoparticles on the surface of BN in the absence of CuO species tend to aggregate upon CO oxidation reactions.Conversely,Au nanoparticles supported on the surface of CuO-modified BN remain small with an average size of~2.0 nm before and after CO oxidation.Moreover,electron transfer between Au and Cu species possibly favors the stabilization of highly dispersed Au nanoparticles on the BN surface and also enhances CO adsorption.Thus,our results demonstrate that thermally stable and conductive CuO-modified BN is an excellent support for the preparation of highly dispersed and stable Au catalysts.
基金Supported by the National Natural Science Foundation of China (29773031).
文摘The supported Au/TiO2 and Au/TiO2-SiO2 catalysts were prepared by deposition precipitation method. The TPD study reveals that propylene oxide competes with propylene to be adsorbed on the same adsorptive center-Ti^n+ site on the surface of the catalyst and that the adisorbing capacity of the catalyst for propylene oxide is larger than that for propylene. Catalytic behavior for propylene epoxidation with H2 and O2 was tested in a micro-reactor. Under typical conditions, the selectivity for propylene oxide is over 87%. The TG curves show that PO successive oxidation cause carbon deposition on the active center and deactivation of the Au catalysts. Because the amounts of Tin+ site decrease significantly, and consequently the separation between Ti^n+ sites increases, the Au/TiO2-SiO2 catalyst is more stable than Au/TiO2.
基金Project supported by the Excellent Young Scientists Fund from the National Science Foundation of China(NSFC)(21622106)other projects from the NSFC(21771117,21805167).
文摘So far,it is still a controversial issue which status of gold species is a better active site for catalyzing CO oxidation.Herein,the influence of the different atmospheres pretreatment(oxidative and reductive)on gold state of Au/La-CeOx(1 wt%gold loading)catalyst during CO oxidation was studied.The changes of Au species were monitored by combined in situ diffuse reflectance infrared Fourier transform spectroscopy(in situ DRIFTS)and X-ray photoelectron spectroscopy(XPS).For the sample pretreated with oxidative atmosphere,the data show that the initial Au^(3+)is transformed to Au^(δ+)(0<δ<1)during CO oxidation,which is a key step to lead to higher reactivity.For the sample after reductive atmosphere pretreatment,Au^(δ+)is mixed with a small amount of Au^(0)which can be converted to Au^(δ+)with the increase of temperature in reaction.Meanwhile,the sample always maintains high activity during the reaction.Therefore,the Au®+obtained by reductive pretreatment is more active than the Au^(3+)obtained by oxidative treatment in catalyzing CO oxidation.
基金supported by the National Basic Research Program of China (2011CB201400 and 2011CB808700)the National Natural Science Foundation of China (21373019, 21173008 and 21433001)
文摘The aerobic oxidation of glycerol provides an economically viable route to glyceraldehyde, dihydroxyacetone and glyceric acid with versatile applications, for which monometallic Pt, Au and Pd and bimetallic Au-Pt, Au- Pd and Pt-Pd catalysts on TiO2 were examined under base-free conditions. Pt exhibited a superior activity relative to Pd, and Au-Pd and Pt-Pd while Au was essentially inactive. The presence of Au on the Au-Pt/TiO2 catalysts led to their higher activities (normalized per Pt atom) in a wide range of Au/Pt atomic ratios (i.e. 1/3-7/1 ), and the one with the Au/Pt ratio of 3/1 exhibited the highest activity. Such promoting effect is ascribed to the increased electron density on Pt via the electron transfer from Au to Pt, as characterized by the temperature-programmed desorption of CO and infra-red spectroscopy for CO adsorption. Meanwhile, the presence of Au on Au-Pt/TiO2, most like due to the observed electron transfer, changed the product selectivity, and facilitated the oxidation of the secondary hydroxyl groups in glycerol, leading to the favorable formation of dihydroxyacetone over glyceraldehyde and glyceric acid that were derived from the oxidation of the primary hydroxyl groups. The synergetic effect between Au and Pt demonstrates the feasibility in the efficient oxidation of glycerol to the targeted products, for example, by rational tuning of the electronic properties of metal catalysts.
基金supported by the Program for New Century Excellent Talents in University(NCET-06-0268)Natural Science Foundation of Inner Mongolia(2010ZD03)
文摘Perovskite oxide LaMnO3 was prepared by sol-gel method and the nanosize Au/LaMnO3 catalyst was prepared by deposition-precipitation(DP) method in the paper.Characterization of the catalyst sample was made by X-ray diffractometer(XRD),atom absorption spectra(AAS) and X-ray photoelectron spectroscopy(XPS) instrumental methods.The activity,long-term stability and the reasons for deactivation of the gold catalyst in CO oxidation were investigated.The experiment results demonstrated that the Au/LaMnO3 catalyst exhibited high stability in the ambient storage process.However,the gradual decrease in initial activity during 100 h reaction was still observed,which could be ascribed to the aggregation of gold particles and the transfer from gold ion to the metal gold.
基金financially supported by the National Key Research and Development Program of China(No.2016YFC0204300)the National Natural Science Foundation of China(Nos.21571061,21333003 and 21908079)Pujiang Program of the Shanghai Municipal Human Resources and Social Security Bureau(No.18PJD011)。
文摘Development of active and stable catalysts for low-temperature CO oxidation has long been regarded as a hot topic.In this contribution,we used CeO_(2) with high-density surface pits as support to prepare an active and stable Au/CeO_(2) catalyst by an adsorption-deposition method.The obtained 0.05 wt%Au/CeO_(2)-TD(where TD represents thermal decomposition)can maintain its activity at 80℃ for more than 20 h or even after calcination at 800℃ for 2 h.The characterization results showed that the high-density surface pits on CeO_(2)-TD play a decisive role in the stabilization of Au and enhancement of the redox property.This work may provide a new strategy to improve the stability of supported metal catalysts by a simple and conventional method.
基金the National Key R&D Program of China(No.2021YFA1501403)the National Natural Science Foundation of China(Nos.21922803,22038003,92034301,22008066,and 21776077)+3 种基金the Innovation Program of Shanghai Municipal Education Commission,the Program of Shanghai Academic/Technology Research Leader(No.21XD1421000)the Shanghai Science and Technology Innovation Action Plan(No.22JC1403800)the China Postdoctoral Science Foundation(No.BX20190116)111 Project of the Ministry of Education of China(No.B08021).
文摘Identification of the catalytically active sites emerges as the prerequisite for an atomic-level comprehensive understanding and further rational design of highly efficient catalysts.Here,we demonstrate a kinetics strategy to identify the active sites of Au catalyst for the disentanglement of geometric and electronic effects on the selective oxidation of propylene to acrolein.Both the Ti-containing titanium-silicalite-1(TS-1)and Ti-free silicalite-1(S-1)were employed as supports to immobilize Au catalysts,which were investigated by a combination of multiple characterization,kinetics analysis,crystal structure modelling.The Au(111)sites are identified as the main active site for acrolein formation,while their electronic effects are highly relevant to the presence or absence of Ti.Moreover,propylene epoxide(PO)formation mainly involves the co-participation of Au and Ti sites,the proximity between Au and Ti sites is found to have less influences on PO formation in a certain distance.In comparison,acrolein is very likely to generate over Au(111)sites via the hydrogen-assisted O_(2) activation to oxygenated species for its oxidizing propylene.The insights gained here could guide the design and preparation of Au catalysts for selective propylene oxidation.