Microwave-assisted synthesis of gold and silver nanoparticles, as a function of Green Chemistry, non Green Chemistry, and four applicator types are reported. The applicator types are Domestic microwave ovens, commerci...Microwave-assisted synthesis of gold and silver nanoparticles, as a function of Green Chemistry, non Green Chemistry, and four applicator types are reported. The applicator types are Domestic microwave ovens, commercial temperature controlled microwave chemistry ovens (TCMC), digesters, and axial field helical antennae. For each of these microwave applicators the process energy budget where estimated (Watts multiplied by process time = kJ) and energy density (applied energy divided by suspension volume = kJ·ml<sup>-1</sup>) range between 180 ± 176.8 kJ, and 79.5 ± 79 kJ·ml<sup>-1</sup>, respectively. The axial field helical field an-tenna applicator is found to be the most energy efficient (0.253 kJ·m<sup>-1</sup> per kJ, at 36 W). Followed by microwave ovens (4.47 ± 3.9 kJ·ml<sup>-1</sup> per 76.83 ± 39 kJ), and TCMC ovens (2.86 ± 2.3 kJ·m<sup>-1</sup> per 343 ± 321.5 kJ). The digester applicators have the least energy efficiency (36.2 ± 50.7 kJ·m<sup>-1</sup> per 1010 ± 620 kJ). A comparison with reconstructed ‘non-thermal’ microwave oven inactivation microorganism experiments yields a power-law signature of n = 0.846 (R<sup>2</sup> = 0.7923) four orders of magnitude. The paper provides a discussion on the Au and Ag nanoparticle chemistry and bio-chemistry synthesis aspects of the microwave applicator energy datasets and variation within each dataset. The visual and analytical approach within the energy phase-space projection enables a nanoparticle synthesis route to be systematically characterized, and where changes to the synthesis are to be mapped and compared directly with historical datasets. In order to help identify lower cost nanoparticle synthesis, in addition to potentially reduce synthesis energy to routes informed changes to potentially reduce synthesis energy budget, along with nanoparticle morphology and yield.展开更多
The colloidal Au core/Ag shell structure composite nanoparticles were synthesized in PEG-acetone solution by photochemical route. The monodispersed Au nanoparticles with average diameter of 3.9 nm were used as growth ...The colloidal Au core/Ag shell structure composite nanoparticles were synthesized in PEG-acetone solution by photochemical route. The monodispersed Au nanoparticles with average diameter of 3.9 nm were used as growth seeds. The optical property of colloids and the sizes of composite nanoparticles were characterized when the molar ratio of Au to Ag ranges from 4∶1 to 1∶4. The results show that a composite nanoparticle structure similar to strawberry shape is formed at the molar ratio of Au to Ag from 4∶1 to 1∶1; the composite nanoparticles consisting of a core of Au and shell of Ag were generated at the 1∶4 molar ratio, having a striking feature of forming (interconnected) network structure.展开更多
Au@Au@Ag double shell nanoparticles were fabricated and characterized using TEM,STEM-mapping and UV-Vis methods.Using crystal violet as Raman probe,the surface-enhanced Raman scattering(SERS)activity of the as-prepare...Au@Au@Ag double shell nanoparticles were fabricated and characterized using TEM,STEM-mapping and UV-Vis methods.Using crystal violet as Raman probe,the surface-enhanced Raman scattering(SERS)activity of the as-prepared Au@Au@Ag nanoparticles was studied by comparing to Au,Au@Ag and Au@Au core-shell nanoparticles which were prepared by the same methods.Moreover,it can be found that the SERS activity was enhanced obviously by introduction of NaCl and the concentrations of NaCl played a key role in SERS detection.With an appropriate concentration of NaCl,the limit of detection as low as 10^(-10)mol/L crystal violet can be achieved.The possible enhanced mechanism was also discussed.Furthermore,with simple sample pretreatment,the detection limit of 5μg/g Rhodamine B(RhB)in chili powders can be achieved.The results highlight the potential utility of Au@Au@Ag for detection of illegal food additives with low concentrations.展开更多
Protein-directed fluorescent Au nanoclusters have been widely studied owing to their potential applications in sensing,imaging,and drug and gene delivery.However,the use of nanoclusters in drug delivery is limited by ...Protein-directed fluorescent Au nanoclusters have been widely studied owing to their potential applications in sensing,imaging,and drug and gene delivery.However,the use of nanoclusters in drug delivery is limited by low cellular uptake.In this study,human serum albumin-directed Au nanoclusters served as building blocks to obtain protein nanoparticles by desolvation.The nanoparticles had a decent quantum yield(QY),high colloidal stability and low cytotoxicity,and they could be readily conjugated with biological molecules.The cellular uptake of the Au nanoclusters and nanocluster-loaded protein nanoparticles were studied by confocal fluorescence microscopy.Agglomeration of the protein-directed Au nanoclusters into 50–150-nm nanoparticles dramatically increased the cellular uptake.展开更多
Monodisperse Au-Fe3O4 heterodimeric nanoparticles (NPs) were prepared by injecting precursors into a hot reaction solution. The size of Au and Fe3O4 particles can be controlled by changing the injection temperature....Monodisperse Au-Fe3O4 heterodimeric nanoparticles (NPs) were prepared by injecting precursors into a hot reaction solution. The size of Au and Fe3O4 particles can be controlled by changing the injection temperature. UVis spectra show that the surface plasma resonance band of Au-Fe3O4 heterodimeric NPs was evidently red-shifted compared with the resonance band of Au NPs of similar size. The as-prepared heterodimeric Au-Fe3O4 NPs exhibited superparamagnetic properties at room temperature. The Ag-Fe3O4 heterodimeric NPs were also prepared by this synthetic method simply using AgNO3 as precursor instead of HAuCl4. It is indicated that the reported method can be readily extended to the synthesis of other noble metal conjugated heterodimeric NPs.展开更多
In Ag^+ and Au^3+ co-doped silicate glass sample, we realized controllable precipitation and dissolution of Ag and Au nanoparticles. A new method was proposed for separate precipitation of Ag and Au nanoparticles in...In Ag^+ and Au^3+ co-doped silicate glass sample, we realized controllable precipitation and dissolution of Ag and Au nanoparticles. A new method was proposed for separate precipitation of Ag and Au nanoparticles in different areas of the same sample through femtosecond laser irradiation and further annealing; different colors were obtained in the same glass. We also studied the laser dissolution of Ag and Au nanoparticles in the Ag^+ and Au^3+co-doped silicate glass. The mechanism of the phenomena we observed was discussed briefly.展开更多
In this research we decided to analyze the addition of silver(Ag°)on zinc oxide(ZnO)utilizing two nanoparticles:the synthesized zinc oxide-doped-silver nanoparticles(ZnO/Ag_Lab)utilizing the zinc nitrate as metal...In this research we decided to analyze the addition of silver(Ag°)on zinc oxide(ZnO)utilizing two nanoparticles:the synthesized zinc oxide-doped-silver nanoparticles(ZnO/Ag_Lab)utilizing the zinc nitrate as metal precursor for ZnO and silver nitrate as metal precursor for Ag°;and the commercial nanoparticle ZnO/Ag.For the study of application of the nanoparticles,they were processed in the form of films and the polymer utilized was the blend of HMSPP(high melt strength polypropylene)and styrene-ethylene/butadiene-styrene.For the study of nanoparticles,they were submitted to biocide tests against Staphylococcus aureus(ATCC 6538)and Escherichia coli(ATCC8739)and XRD(X-Ray Diffraction).The XRD analysis results indicated,in both of nanoparticles,with the presence of wurtzite phase of ZnO,being that on the commercial nanoparticles the intensity of peak was higher than that of synthesized one,on other hand,the peaks attributed to Ag°,were more intense in the synthesized nanoparticle.展开更多
Sn3.5Ag (mass fraction, %) nanoparticles were synthesized by an improved chemical reduction method at room temperature. 1,10-phenanthroline and sodium borohydride were selected as the surfactant and reducing agent, ...Sn3.5Ag (mass fraction, %) nanoparticles were synthesized by an improved chemical reduction method at room temperature. 1,10-phenanthroline and sodium borohydride were selected as the surfactant and reducing agent, respectively. It was found that no obvious oxidation of the synthesized nanoparticles was traced by X-ray diffraction. In addition, the results show that the density of primary particles decreases with decreasing the addition rate of the reducing agent. Moreover, the slight particle agglomeration and slow secondary particle growth can result in small-sized nanoparticles. Meanwhile, the effect of surfactant concentration on the particle size can effectively be controlled when the reducing agent is added into the precursor at an appropriate rate. In summary, the capping effect caused by the surfactant molecules coordinating with the nanoclusters will restrict the growth of the nanoparticles. The larger the mass ratio of the surfactant to the precursor is, the smaller the particle size is.展开更多
ABSTRACT Rationally designing broad-spectrum photocatalysts to harvest whole visible-light region photons and enhance solar energy conversion is a“holy grail”for researchers,but is still a challenging issue.Herein,b...ABSTRACT Rationally designing broad-spectrum photocatalysts to harvest whole visible-light region photons and enhance solar energy conversion is a“holy grail”for researchers,but is still a challenging issue.Herein,based on the common polymeric carbon nitride(PCN),a hybrid co-catalysts system comprising plasmonic Au nanoparticles(NPs)and atomically dispersed Pt single atoms(PtSAs)with different functions was constructed to address this challenge.For the dual co-catalysts decorated PCN(PtSAs–Au_(2.5)/PCN),the PCN is photoexcited to generate electrons under UV and short-wavelength visible light,and the synergetic Au NPs and PtSAs not only accelerate charge separation and transfer though Schottky junctions and metal-support bond but also act as the co-catalysts for H_(2) evolution.Furthermore,the Au NPs absorb long-wavelength visible light owing to its localized surface plasmon resonance,and the adjacent PtSAs trap the plasmonic hot-electrons for H_(2) evolution via direct electron transfer effect.Consequently,the PtSAs–Au_(2.5)/PCN exhibits excellent broad-spectrum photocatalytic H_(2) evolution activity with the H_(2) evolution rate of 8.8 mmol g^(−1) h^(−1) at 420 nm and 264μmol g^(−1) h^(−1) at 550 nm,much higher than that of Au_(2.5)/PCN and PtSAs–PCN,respectively.This work provides a new strategy to design broad-spectrum photocatalysts for energy conversion reaction.展开更多
Monodisperse Ag nanoparticles with diameters of about 3.4 nm were synthesized by a facile ultrasonic synthetic route at room temperature with the reduction of borane-tert-butylamine in the presence of oleylamine (OAm...Monodisperse Ag nanoparticles with diameters of about 3.4 nm were synthesized by a facile ultrasonic synthetic route at room temperature with the reduction of borane-tert-butylamine in the presence of oleylamine (OAm) and oleic acid (OA). The reaction parameters of time, the molar ratios of OAm to OA were studied, and it was found that these parameters played important roles in the morphology and size of the products. Meanwhile, surface enhanced Raman spectrum (SERS) property suggested the Ag nanoparticles exhibited high SERS effect on the model molecule Rhodamine 6G. And also, two-photon fluorescence images showed that the silver nanoparticles had high performances in fluorescence enhancement.展开更多
文摘Microwave-assisted synthesis of gold and silver nanoparticles, as a function of Green Chemistry, non Green Chemistry, and four applicator types are reported. The applicator types are Domestic microwave ovens, commercial temperature controlled microwave chemistry ovens (TCMC), digesters, and axial field helical antennae. For each of these microwave applicators the process energy budget where estimated (Watts multiplied by process time = kJ) and energy density (applied energy divided by suspension volume = kJ·ml<sup>-1</sup>) range between 180 ± 176.8 kJ, and 79.5 ± 79 kJ·ml<sup>-1</sup>, respectively. The axial field helical field an-tenna applicator is found to be the most energy efficient (0.253 kJ·m<sup>-1</sup> per kJ, at 36 W). Followed by microwave ovens (4.47 ± 3.9 kJ·ml<sup>-1</sup> per 76.83 ± 39 kJ), and TCMC ovens (2.86 ± 2.3 kJ·m<sup>-1</sup> per 343 ± 321.5 kJ). The digester applicators have the least energy efficiency (36.2 ± 50.7 kJ·m<sup>-1</sup> per 1010 ± 620 kJ). A comparison with reconstructed ‘non-thermal’ microwave oven inactivation microorganism experiments yields a power-law signature of n = 0.846 (R<sup>2</sup> = 0.7923) four orders of magnitude. The paper provides a discussion on the Au and Ag nanoparticle chemistry and bio-chemistry synthesis aspects of the microwave applicator energy datasets and variation within each dataset. The visual and analytical approach within the energy phase-space projection enables a nanoparticle synthesis route to be systematically characterized, and where changes to the synthesis are to be mapped and compared directly with historical datasets. In order to help identify lower cost nanoparticle synthesis, in addition to potentially reduce synthesis energy to routes informed changes to potentially reduce synthesis energy budget, along with nanoparticle morphology and yield.
基金Project(2000E0008Z) supported by Natural Science Foundation of Yunnan Province
文摘The colloidal Au core/Ag shell structure composite nanoparticles were synthesized in PEG-acetone solution by photochemical route. The monodispersed Au nanoparticles with average diameter of 3.9 nm were used as growth seeds. The optical property of colloids and the sizes of composite nanoparticles were characterized when the molar ratio of Au to Ag ranges from 4∶1 to 1∶4. The results show that a composite nanoparticle structure similar to strawberry shape is formed at the molar ratio of Au to Ag from 4∶1 to 1∶1; the composite nanoparticles consisting of a core of Au and shell of Ag were generated at the 1∶4 molar ratio, having a striking feature of forming (interconnected) network structure.
基金supported by the National Natural Science Foundation of China(No.21505118)the Natural Science Foundation of Jiangsu Province of China(BK 20150438)Postdoctoral Research Funding Program of Jiangsu Province of China(No.1701133C).
文摘Au@Au@Ag double shell nanoparticles were fabricated and characterized using TEM,STEM-mapping and UV-Vis methods.Using crystal violet as Raman probe,the surface-enhanced Raman scattering(SERS)activity of the as-prepared Au@Au@Ag nanoparticles was studied by comparing to Au,Au@Ag and Au@Au core-shell nanoparticles which were prepared by the same methods.Moreover,it can be found that the SERS activity was enhanced obviously by introduction of NaCl and the concentrations of NaCl played a key role in SERS detection.With an appropriate concentration of NaCl,the limit of detection as low as 10^(-10)mol/L crystal violet can be achieved.The possible enhanced mechanism was also discussed.Furthermore,with simple sample pretreatment,the detection limit of 5μg/g Rhodamine B(RhB)in chili powders can be achieved.The results highlight the potential utility of Au@Au@Ag for detection of illegal food additives with low concentrations.
基金This work was supported by the Russian Scientific Foundation (project no.14-13-01167)The work by B.N.K.(AuNC synthesis)was partly supported by a grant from the Russian Foundation for Basic Research (no.15-33-20248).
文摘Protein-directed fluorescent Au nanoclusters have been widely studied owing to their potential applications in sensing,imaging,and drug and gene delivery.However,the use of nanoclusters in drug delivery is limited by low cellular uptake.In this study,human serum albumin-directed Au nanoclusters served as building blocks to obtain protein nanoparticles by desolvation.The nanoparticles had a decent quantum yield(QY),high colloidal stability and low cytotoxicity,and they could be readily conjugated with biological molecules.The cellular uptake of the Au nanoclusters and nanocluster-loaded protein nanoparticles were studied by confocal fluorescence microscopy.Agglomeration of the protein-directed Au nanoclusters into 50–150-nm nanoparticles dramatically increased the cellular uptake.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.60571045 and 50872147)the National High-Tech.Research and Development Program of China (Grant No.2007AA03Z035)
文摘Monodisperse Au-Fe3O4 heterodimeric nanoparticles (NPs) were prepared by injecting precursors into a hot reaction solution. The size of Au and Fe3O4 particles can be controlled by changing the injection temperature. UVis spectra show that the surface plasma resonance band of Au-Fe3O4 heterodimeric NPs was evidently red-shifted compared with the resonance band of Au NPs of similar size. The as-prepared heterodimeric Au-Fe3O4 NPs exhibited superparamagnetic properties at room temperature. The Ag-Fe3O4 heterodimeric NPs were also prepared by this synthetic method simply using AgNO3 as precursor instead of HAuCl4. It is indicated that the reported method can be readily extended to the synthesis of other noble metal conjugated heterodimeric NPs.
基金Funded by the National Natural Science Foundation of China (No.50672087 and No.60778039)National Basic Research Program of China (No.2006CB806000)National High Technology Program of China (No.2006AA03Z304)
文摘In Ag^+ and Au^3+ co-doped silicate glass sample, we realized controllable precipitation and dissolution of Ag and Au nanoparticles. A new method was proposed for separate precipitation of Ag and Au nanoparticles in different areas of the same sample through femtosecond laser irradiation and further annealing; different colors were obtained in the same glass. We also studied the laser dissolution of Ag and Au nanoparticles in the Ag^+ and Au^3+co-doped silicate glass. The mechanism of the phenomena we observed was discussed briefly.
文摘In this research we decided to analyze the addition of silver(Ag°)on zinc oxide(ZnO)utilizing two nanoparticles:the synthesized zinc oxide-doped-silver nanoparticles(ZnO/Ag_Lab)utilizing the zinc nitrate as metal precursor for ZnO and silver nitrate as metal precursor for Ag°;and the commercial nanoparticle ZnO/Ag.For the study of application of the nanoparticles,they were processed in the form of films and the polymer utilized was the blend of HMSPP(high melt strength polypropylene)and styrene-ethylene/butadiene-styrene.For the study of nanoparticles,they were submitted to biocide tests against Staphylococcus aureus(ATCC 6538)and Escherichia coli(ATCC8739)and XRD(X-Ray Diffraction).The XRD analysis results indicated,in both of nanoparticles,with the presence of wurtzite phase of ZnO,being that on the commercial nanoparticles the intensity of peak was higher than that of synthesized one,on other hand,the peaks attributed to Ag°,were more intense in the synthesized nanoparticle.
基金Projects(50971086,51171105)supported by the National Natural Science Foundation of China
文摘Sn3.5Ag (mass fraction, %) nanoparticles were synthesized by an improved chemical reduction method at room temperature. 1,10-phenanthroline and sodium borohydride were selected as the surfactant and reducing agent, respectively. It was found that no obvious oxidation of the synthesized nanoparticles was traced by X-ray diffraction. In addition, the results show that the density of primary particles decreases with decreasing the addition rate of the reducing agent. Moreover, the slight particle agglomeration and slow secondary particle growth can result in small-sized nanoparticles. Meanwhile, the effect of surfactant concentration on the particle size can effectively be controlled when the reducing agent is added into the precursor at an appropriate rate. In summary, the capping effect caused by the surfactant molecules coordinating with the nanoclusters will restrict the growth of the nanoparticles. The larger the mass ratio of the surfactant to the precursor is, the smaller the particle size is.
基金supported by the National Natural Science Foundation of China(Grant No.51871078 and 52071119)Interdisciplinary Research Foundation of HIT(Grant No.IR2021208)+1 种基金State Key Laboratory of Urban Water Resource and Environment(Harbin Institute of Technology)(No.2022TS38)Heilongjiang Science Foundation(No.LH2020B006).
文摘ABSTRACT Rationally designing broad-spectrum photocatalysts to harvest whole visible-light region photons and enhance solar energy conversion is a“holy grail”for researchers,but is still a challenging issue.Herein,based on the common polymeric carbon nitride(PCN),a hybrid co-catalysts system comprising plasmonic Au nanoparticles(NPs)and atomically dispersed Pt single atoms(PtSAs)with different functions was constructed to address this challenge.For the dual co-catalysts decorated PCN(PtSAs–Au_(2.5)/PCN),the PCN is photoexcited to generate electrons under UV and short-wavelength visible light,and the synergetic Au NPs and PtSAs not only accelerate charge separation and transfer though Schottky junctions and metal-support bond but also act as the co-catalysts for H_(2) evolution.Furthermore,the Au NPs absorb long-wavelength visible light owing to its localized surface plasmon resonance,and the adjacent PtSAs trap the plasmonic hot-electrons for H_(2) evolution via direct electron transfer effect.Consequently,the PtSAs–Au_(2.5)/PCN exhibits excellent broad-spectrum photocatalytic H_(2) evolution activity with the H_(2) evolution rate of 8.8 mmol g^(−1) h^(−1) at 420 nm and 264μmol g^(−1) h^(−1) at 550 nm,much higher than that of Au_(2.5)/PCN and PtSAs–PCN,respectively.This work provides a new strategy to design broad-spectrum photocatalysts for energy conversion reaction.
基金V. ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.21071136), the National Basic Research Program of China (No.2010CB934700and No.2012CB932001), the Research FUnd for the Doctoral Program of Higher Education of China (No.20103402110033) and Anhui Provincial Education Department (No.KJ2012ZD11).
文摘Monodisperse Ag nanoparticles with diameters of about 3.4 nm were synthesized by a facile ultrasonic synthetic route at room temperature with the reduction of borane-tert-butylamine in the presence of oleylamine (OAm) and oleic acid (OA). The reaction parameters of time, the molar ratios of OAm to OA were studied, and it was found that these parameters played important roles in the morphology and size of the products. Meanwhile, surface enhanced Raman spectrum (SERS) property suggested the Ag nanoparticles exhibited high SERS effect on the model molecule Rhodamine 6G. And also, two-photon fluorescence images showed that the silver nanoparticles had high performances in fluorescence enhancement.